
Advanced Computer Graphics Final Project Report

Auston Sterling: sterla@rpi.edu
Brendon Justin: justib@rpi.edu

1 Introduction

For our final project, we implemented a system for rendering forests of trees in real time. We are using
the method outlined in Eric Bruneton and Fabrice Neyret’s Real-time Realistic Rendering and Lighting of
Forests[1], specifically their z-field method for rendering trees of apparent sizes larger than a few pixels.
Trees are often difficult to render in real-time applications as their geometry is complex, though simplified
methods are easy to identify as lower quality. Our program provides fast and accurate rendering of trees
as well as a fractal based landscape to simulate a forest. In this paper, we explain the motivation for this
model, then describe the algorithms used. We finish up with some ideas for future work and some of the
bugs we encountered.

2 Motivation

Trees are often a plentiful part of landscapes, and so rendering them at the same level of fidelity as foreground
objects can make real-time rendering impossible. At the same time, lower fidelity objects can detract from
a scene’s appearance, even if they are part of the background.

1



Moderate quality tree models can be 250,000 or more triangles[2]. Just 20 of such trees would involve 5
million polygons. For comparison, a frame in the 2007 game Lost Planet can have 3 million polygons in a
frame. Clearly, conventional rendering methods do not permit the use of such tree models in games. Games
must instead rely on include low quality tree models or other workarounds of reduced fidelity.

Bruneton and Fabrice [1] implemented a fast means of rendering high quality mid-distance trees, display-
ing 180,000 such trees at over 30 frames per second. We hoped to duplicate their success, rendering tens of
thousands of trees across a landscape in real time.

3 Algorithms/Techniques

3.1 Terrain Generation

The ground under the trees is dynamically generated at runtime when the program is run. The diamond-
square method of fractal terrain generation is used to create a height map, which is then applied to a square
grid to create varied terrain. Points are set to the average height of particular surrounding points, then
a random offset is added for variation. The offset is generated uniformly at random on the range (−x, x),
where x is set before the algorithm is run, and is reduced by 2−y each iteration, where y can be adjusted. x is
directly related to the maximum and minimum heights produced, and y is inversely related to the steepness
of generated terrain. Lengths in the algorithm are the number of points between the current point and the
other point in consideration, and can only be considered in horizontal or vertical lines. Points which are
adjacent form a line of length zero. The diamond-square method in pseudocode [3] follows:

Start a square size equal to that of the whole grid

While the length of the side of the squares is greater than zero {

Pass through the array and perform the diamond

step for each square present.

Pass through the array and perform the square

step for each diamond present.

Reduce the random height offset range.

Reduce the square size by half.

Divide each square into non-overlapping squares of the

current square side length.

}

The diamond step consists of finding the point in the center of the current squares corners, setting its
height to the average of those points heights, and adding the random offset. The diamond step is so named
because the five points considered look like four diamonds meeting at the center point. In the square step,
for each diamond meeting at the center from the diamond step, find the center point. The points height is
set to the average of the points from the diamond shape, plus the random offset [3].

3.2 Tree Distribution

Trees are placed in each square of the world grid independently, and their positions varied in a set pattern
based on the number of trees in that square. Small random perturbations, inversely proportional to the
number of trees in that square, are added to each position to avoid producing a regular grid. The number
of trees in each square in the terrain grid is a Poisson random variable; the Poisson distribution was chosen
because it works with integer values, has an equal mean and median, and only requires one parameter. After
terrain is generated, trees are vertically positioned to sit directly on the ground.

3.3 View Computation

In order to ensure high frame rate during run time, views of the tree are pre-computed. Cameras are set
on the upper hemisphere around the center of the tree and scaled to properly capture the whole tree. The

2



(a) Terrain, y = 1.0 (b) Terrain, y = 0.8 (c) Terrain, y = 0.5

Figure 1: Terrain generation with varying jaggedness

tree is then drawn to a Frame Buffer Object for each view which is saved to a texture to be used later.
One significant challenge is the proper distribution of camera locations on the hemisphere. While there are
many methods to accomplish this[4], our algorithm evenly splits the hemisphere into rings from the equator
of the sphere up to a point at the top. Each ring is then divided up into an equal number of points. This
results in effectively an even grid with one axis being angle on the XZ plane and the other axis being the
angle up along the Y axis from the XZ plane. The points near the top of the hemisphere end up tightly
clustered; though the camera angle still shifts noticeably around the Y axis, it is not reflected as strongly in
its position.

3.4 Displaying Trees

For each tree in the forest, a quad is displayed and rotated around its center to face the camera. The view
of the tree which is nearest to the angle between the tree and the camera is drawn to the quad. There
is noticeable popping between the views since no interpolation is used, but with 300 views the transitions
are smooth. Selection of the nearest view can be accomplished with simple arithmetic using the grid-like
distribution of camera positions, while quad placement requires two vector cross products and some vector
addition. These are some of the only computations that need to be done with each frame, allowing for
interactive control of scenes of thousands of trees.

4 Results

4.1 Terrain Generation

The fractal terrain generation algorithm produced terrain with plausible variations in height for nearly level
ground. Figure 1a shows relatively flat ground generated, while Figure 1b and Figure 1c show greater height
variation and more jaggedness as the y height offset parameter is varied. All three images have a x parameter
proportional of the square root of the terrain area. The generated terrain appears smooth for y values of 0.8
or greater, as in Figure 1a and Figure 1b.

4.2 Tree Distribution

Tree distribution, when combined with terrain generation, produced several incorrect results before comple-
tion. Figure 2a shows an error in multiplying the current square coordinates with the specified height for
each tree, moving the trees far away from the terrain surface. Figure 2b demonstrates an issue where tree

3



(a) Tree heights (b) Grid scaling

Figure 2: Tree placement bugs

(a) Half coverage (b) Underground trees

Figure 3: Errors in the process of placing trees

4



(a) View Artifacts (b) A Standard View

Figure 4: Tree Views

positions were specified in absolute coordinates, but did not take into account terrain scaling below an area
of 1 unit for each square. Figure 3a shows the largest remaining error in distribution, where only half of
the squares in the terrain have trees placed and rendered. Figure 3b shows the other outstanding error in
distribution, where trees are sometimes not placed at the same height as the terrain.

4.3 View Calculation

After a few days of attempting to ray trace views of the tree, which took nearly six hours per view, rendering
to a Frame Buffer Object was a much simpler task. Figure 4a shows a quick issue where the buffer was not
properly cleared before it was drawn to, but that was an easy fix. View calculation now only takes a few
seconds for to compute 300 views.

4.4 Alpha Blending

Generally, using alpha-blended textures requires that they be drawn in sorted order from back to front.
This is because when drawing a textured quad near the camera, the depth buffer is still updated for the
transparent fragments. When the quads further back are drawn, they fail the depth test and are ignored. If
this sorting does not occur, there will appear to be boxes around each image (see Figure 5). Sorting each
tree by distance from the camera would be time consuming and harm the frame rate of the program. The
problem is still unsolved, although another solution would be to use a fragment shader to specifically drop
transparent fragments.

5 Conclusions

We have implemented automatic view generation in a hemisphere around an object, the automatic selection
of the nearest such view, fractal terrain generation with adjustable height variation, distributing trees with
varying density, and displaying trees in the correct orientation to the camera. The program runs in real
time for smaller cases and shows promise for its goal of rendering enormous numbers of trees quickly and
accurately.

6 Future Work

Future work includes using a different texture for each tree represented in the scene, interpolating multiple
views to create arbitrary views, all aspects of lighting effects and shadows, and rendering distant trees more

5



Figure 5: Alpha Blending Problems

efficiently.
Texturing each tree differently will require a change to shader programming, from the OpenGL fixed

function pipeline. Shaders will enable the use of array textures, with a limit of 2048 compared to the limit
of 160 textures that the fixed function pipeline allows on the NVIDIA GTX 470 [5]. Interpolating multiple
pre-rendered tree views will also require the use of shader programming, performing calculations on the GPU
to maintain real-time calculations and rendering.

Lighting effects and shadowing are not implemented at all, and are a clear opportunity for improvement.
Shadows from trees on the ground, from leaves on other leaves and trees, surface light scattering and
hotspotting in leaves would all increase the plausibility of rendered scenes.

Distant trees can be rendered more efficiently as in Bruneton and Neyret’s work [1], using terrain maps
and shaders. Distant trees around the size of one or two pixels could be rendered with reduced computation
time by implementing their techniques.

6



References

[1] Bruneton, E.& Neyret, F. Real-time Realistic Rendering and Lighting of Forests. Computer Graphics
Forum 31.2 (2012), available at http://hal.inria.fr/hal-00650120/en.

[2] available at http://www.sharecg.com/v/36271/gallery/5/3D-Model/Alder-Tree-OBJ?

interstitial_displayed=Yes.

[3] Paul Martz Generating Random Fractal Terrain available at http://gameprogrammer.com/fractal.

html.

[4] Dave Rusin Topics on Sphere Distributions available at http://www.math.niu.edu/~rusin/

known-math/95/sphere.faq.

[5] WildfireGames OpenGL capabilities report: GTX 470 available at http://feedback.wildfiregames.

com/report/opengl/device/GeForce%20GTX%20470

7

http://hal.inria.fr/hal-00650120/en
http://www.sharecg.com/v/36271/gallery/5/3D-Model/Alder-Tree-OBJ?interstitial_displayed=Yes
http://www.sharecg.com/v/36271/gallery/5/3D-Model/Alder-Tree-OBJ?interstitial_displayed=Yes
http://gameprogrammer.com/fractal.html
http://gameprogrammer.com/fractal.html
http://www.math.niu.edu/~rusin/known-math/95/sphere.faq
http://www.math.niu.edu/~rusin/known-math/95/sphere.faq
http://feedback.wildfiregames.com/report/opengl/device/GeForce%20GTX%20470
http://feedback.wildfiregames.com/report/opengl/device/GeForce%20GTX%20470

	Introduction
	Motivation
	Algorithms/Techniques
	Terrain Generation
	Tree Distribution
	View Computation
	Displaying Trees

	Results
	Terrain Generation
	Tree Distribution
	View Calculation
	Alpha Blending

	Conclusions
	Future Work

