
 
 
 

-  
Kevin Todisco 

 
 

 

Figure 1: A large scale example of the simulation.  The leftmost image shows the beginning of the test case, and shows how the 
fluid refracts the environment around it.  The middle image is taken just after the ball of water hits the bottom of the box.  The 
rightmost image shows the fluid after it has stabilized.  Notice that it appears to have gained volume, a limitation which I discuss 
in Section 4. 

 
 

Abstract 
I present a real-time implementation of realistic 
3D fluid, and render it using an advanced image-
space refraction method, creating the look of a 
fluid such as water.  The water surface is 
constructed using the Marching Cubes 
algorithm, which I implement as a geometry 
shader. 

Introduction 
Fluid simulation in 3-dimensional space has 
long been a task which required offline 
computation to produce physically realistic 
results in both behavior and appearance.  As a 
result, it was not possible to incorporate an 

advanced fluid simulation into a necessarily 
real-time setting such as a video game; thus, 
fluid in game environments, such as water, are 
often represented using various cheap tricks like 
refractive shaders applied on a plane, or simple 
particle and mass spring systems to represent a 
full body of fluid. 

Recent 2D games have incorporated water as a 
core element, suc Shooter or 

 for mobile devices.  Both 
systems are still restricted to a particle system, 

surface around the particles.  
Shooter did not produce visually pleasing 
results; the resulting fluid was clunky and had 
hard edges.  produced a more 



believable look, but the particle basis could still 
be identified. 

My method achieves realistic behavior through 
the use of the Marker-and-Cell (MAC) method, 
and it does so in 3-dimensional space in real-
time.  In addition, it applies a shader which 
approximates refraction through two surfaces to 
the resulting fluid mesh, achieving the more 
complex refractive effects of a fluid such as 
water.  Figure 1 shows a large test case of my 
program. 

In the next section, I will describe the previous 
work which I used as a basis for this project.  In 
Section 3, I begin to describe the 
implementation of my project, and break this 
down into four parts: the parallelization of the 
Navier-Stokes fluid simulation, the 
approximated refraction shader, the extension of 
this refraction to dynamic scenes, and the 
marching cubes geometry shader.  In Section 4, I 
discuss limitations of my method, and follow up 
with future work in Section 5, before giving 
results and concluding in Section 6. 

2    Previous Work 
Foster and Metaxas [1] presented an 
implementation of the MAC fluid simulation 
method, and achieved behaviorally realistic 
results through the solving of the Navier-Stokes 
fluid equations.  Their computation, however, 
was done offline due to the hardware available 
to them at the time. 

Nvidia Researchers [3] have recently presented a 
real-time implementation of 3D fluids in GPU 
Gems 3.  Their method represents a robust 
approach to accomplishing the task; my 
approach is similar in nature, but employs 
different methods for both the physics 
simulation and rendering. 

Chris Wyman [2] described an approximate 
image-space approach for computing complex 

refraction in interactive times.  I employ his 
method and extend it to handle dynamic scene 
surrounding the refractive object. 

My method combines techniques described in all 
three papers to accomplish a real-time 3D fluid. 

3    Implementation 
3.1    Parallel Navier Stokes 

 

 

Figure 2: A visualization of the fluid simulation cell 
velocities. 

In order to achieve real-time, the fluid 
simulation steps must be executed in 
parallel.  While small test cases (i.e. less than 
1000 cells and less than 10,000 particles) will 
run at appropriate speed in a serial 
implementation, large cases, which would be 
necessary for complex game levels, require a 
faster execution method. 

To perform the parallelization of the physics 
simulation, I utilize Nv
programming language, which is specifically 
intended for General Purpose GPU 



Programming.  An overview of CUDA is given 
in Appendix A. 

The fluid simulation steps, as described by 
Foster and Metaxas, are easily executed in 
parallel.  One only has to take caution that two 
CUDA threads do not attempt to write to the 
same location at the same time.  Thus, since 

thread, cells may 
but instead store their intended modification 
internally, and this may be applied by the cell 
which was intended to be modified in a second 
pass.  Simultaneous reads of data from other 
cells are permitted.  The only exception to the 
ease of parallel fluid calculations is enforcement 
of fluid incompressibility, which I will discuss 
in the section on limitations.  Figure 2 shows a 
visualization of the cell velocities simulated as 
part of the Navier-Stokes formulas. 

3.2    Approximate Two-Surface 
Refraction 

technique for interactive refraction, two specific 
implementation details need to be noted.  The 
first regards the manual projection of a 3-
dimensional point into 2-dimensional screen 
space.  The second involves the extraction of a 

 
from the first rendering pass. 

When taking a 3D point and projecting it into 
2D space, the traditional method is to first 
multiply the point by the projection matrix.  At 
this o divide all 
components by w, a step which I excluded and  

 

Figure 3: The image on the left shows a one-surface 
refraction.  The right image shows refraction through two 
surfaces.  More interesting effects can be seen in the right 
image. 

which was ultimately the cause of some 
unexpected visual results.  Even after screen 
coordinates are obtained, one additional step 
must be taken to map them onto a [0,1] range by 
dividing by the screen dimensions.  Therefore 
the screen sizes must be passed as uniforms to 
the shader. 

Once the texture coordinates are computed, they 
are used to look up the normal and depth value 
in the render textures from the first rendering 
pass.  The normal is straightforward; it is 
directly obtained from the color value in the 
texture, with no additional computation needed, 
save excluding the alpha value (which will be 
1.0, and must be changed to 0.0).  The depth 
however, is stored by OpenGL in a non-linear 
fashion.  Therefore, most depth values in the 
texture will be close to 1.0.  A computation is 
needed to convert this non-linear value back into 
a linear mapping.  That computation can be 
accomplished elegantly with the following line: 

float  orig_d  =  2*ZFar*ZNear  /  (ZFar  +  ZNear  
  (ZFar     Znear)*(2*depth.x     1));;  

The resulting value is the original depth in world 
units, and therefore is sufficient for the next step 
of the algorithm, which is computing the 
intersection point on the back-side of the 
refractive object in world space. 



3.3    Extension to Dynamic Scenes 

dynamic scenes is straightforward: render the 
scene around the object to a cubemap.  This step 
therefore requires six rendering passes, one for 
each positive and negative primary world 
axis.  The resulting cubemap is used in the 
refraction shader for color lookups once a twice-
refracted ray is computed. 

The exact point at which the camera should be 
placed, or how many viewpoints should be 
rendered is an area for additional 
research.  Placing the camera at the center of the 
object gives good results for objects located far 
from the object, but poor results for objects close 
to it (see Figure 4).  Alternatives for number of 
rendering passes include increasing the field-of-
view to 180 degrees and rendering twice, or 
rendering once with a 360 degree 
fisheye.  Doing so would alter the color lookup 
method in the shader, and were not included in 
this implementation. 

3.4    Marching Cubes in a G eometry 
Shader 
The challenge of implementing marching cubes 
in a geometry shader lies in the complexity of 
the marching cubes algorithm.  If one is not 

limit for a single shader program, even with 
 

pass as much pre-computed data as possible to 
the shader to avoid repeated computation of 
static information.  This data includes the 
various unique marching cubes cases. 

In the implementation, I store the cases as a 
15x256 2D texture.  A texture is used to allow 
for the passing of large datasets into a shader 
program; memory allocation and shader 
language limitations prevent the cases being 
passed as a more traditional 2D array.  The 
texture itself contains integers, and therefore 
OpenGL must be told to store the values as 16-

bit alpha integers, to avoid a conversion to 
floating point.  For each case of marching cubes, 
the 15 integers correspond to five sets of triangle 
vertices specified by the edge indices of the 
cube.  For cases of marching cubes which 
generate less than five triangles, the data is 
padded with values of -1. 

The shader itself emits triangle strips with a 
maximum of 15 vertices.  Unfortunately this 
means that the data passed down the rendering 
pipeline is not optimized, since each triangle 
strip will consist of only one triangle.  The 
necessity of triangle strips is dictated by the 
current geometry shader model of OpenGL. 

4    L imitations 
The current implementation is limited to 
representing the simulation space as a box with 
planar boundaries.  Additional boundary 
velocity logic would need to be added to allow 
for more unique shapes of fluid flow, but the 
entire simulation space itself would still be best 
represented as a box. 

My implementation also does not account for 
incompressibility of liquid.  This is a result of 
the mathematical difficulties in solving all cells 
for zero divergence in parallel.  The serial 
version of the program is more straightforward, 
as divergences are constantly changed when 
iterating over cells.  It might be the case that 
more passes are required to enforce 
incompressibility in parallel, but this could be 
avoided if a one-pass solution, such as solving a 
matrix, could be found.  Without enforcing 
incompressibility, the fluid has a tendency to 
gain in volume as time progresses. 



 

Figure 4: The bunny is improperly refracted by the water.  
It appears to be left of where it actually is. 

In addition, because the render-to-cubemap step 
renders from the point of view of the refractive 
mesh, objects which are close to the mesh will 
not appear to be properly refracted, as 
demonstrated in Figure 4. 

5    Future Work 
Additional research should be conducted about 
methods t
surface.  While the Marching Cubes algorithm 
was successfully implemented in a geometry 
shader, the visuals rely on a fine rendering 
grid.  This is a difficult task in that any CPU-
GPU memory copies for large data sets must be 
avoided, and this is not the case with the current 
implementation.  Also, for fine grids, where the 
number of primitives scales dramatically, 
marching cubes does not perform efficiently 
enough for real-time. 

I would also want to look into interactivity with 
the fluid.  As it is intended to show viability as 
game mechanic, interactivity with both the user 
and the surrounding environment is a 
necessity.  Therefore research must be done in 

both user input affecting the simulation space, 
n 

solid physics objects.  While simulations 

have been implemented, to the best of my 
knowledge the task has not yet been carried out 
on the GPU. 

6    Results and Conclusion 
Using an NVidia GeForce GTX 560 Ti and an 
Intel Core i7 @ 3.40 GHz, all demonstrations 
ran at over 30 fps, with the largest example 
fluctuating between 30 and 60 fps, and all 
smaller examples running above 60 fps.  Based 
on these results, I conclude that it is now 
feasible to use the fluid as a core game 
mechanic, despite the large amount of additional 
work required to make the fluid interactive.  
Given the way hardware has advanced over the 
past few years, new hardware may be available 
in the near future which can run an even more 
detailed simulation at faster rates. 

References 
Realistic Animation of 

Fluids. . 

-

SIGGRAPH, 2005. 

[3] Keenan Crane, Ignacio Llamas, Sarah Tariq, 
-Time Simulation and Rendering of 3D 

Fluids.  GPU Gems 3, 2009. 

Appendix A : C UD A Overview 
CUDA is a General Purpose GPU programming 
language with syntax almost identical to C.  It 
easily integrates into build environments such as 
Visual Studio, and the CUDA compiler includes 
a C/C++ compiler so that programs can contain 
a combination of C and CUDA code. 



A GPU consists of many individual processing 
units, all of which are much smaller than a 
processor one would find at the heart of a 
computer.  When executing code on the GPU, 
the number of processors to be used is specified 
by the programmer, and all of these processors 
execute code at the same time.  The processors 
used are typically abstracted into the term 

ocks  or warps.  

So, in CUDA, a grid of blocks is launched, each 
of which will run the same computation, a 
kernel, which is the function written in CUDA 
C.  Each block can also execute a certain 
number of threads, so each thread will run this 
computation, simultaneously. 

 

Figure 5: A visualization of a 2D grid of blocks on the 
GPU.  Each block contains within it another 2D grid of 
threads.  The indices of the blocks and threads may be used 
to construct an index into a global array. 

What is most important is the indexing scheme 
used for the data.  The blocks and threads have 
unique IDs from which an index can be 
constructed into a global memory array (see 
Figure 5).  Hence, each thread should operate on 
one element of a global memory array.  The 
mapping of threads to array locations is defined 
by the user, and could be anything, so long as all 
desired computations are made. 

This style of computations allows for identical 
operations to be carried out simultaneously on 
independent elements of data.   For example, 
computing the sum of two arrays, A and B, into 
an array C, each of which have size 800,000, can 
be accomplished conceptually in the same time 

as a single element sum, because each pair of 
elements in A and B will be summed 
simultaneously once delegated to different 
threads. 

Finally, one must be cautious to avoid memory 
writes to the same location in global memory.  
As the threads execute simultaneously, it is not 
guaranteed which thread will make a successful 
write in the event that more than one thread tries 
to do so to the same memory location.  It is 
highly unlikely that two threads which are 
competing to write will both write successfully. 


