
Kind of Quick Ray Tracing

Greg Yauney∗
Advanced Computer Graphics

Spring 2012

Abstract

Adaptive ray tracing is a way to accelerate the traditional ray tracing
we implemented in homework three. The idea, at its most funda-
mental, is to apply a test to each pixel and point in the scene which
determines if the final color of the pixel/point would be altered if
a distributed ray tracing technique is applied to it. In this project,
I implemented such tests for antialiasing, soft shadows, glossy re-
flections, and motion blur, along with alternative methods of testing
and subsequently shooting the distributed rays once/if said tests are
passed. Some of these methods is adaptive on the other end—it
dynamically adjusts how many rays are shot into the scene after
a pixel or point passes its corresponding test. This paper is basi-
cally a description, analysis, and comparison—of both efficiency
and quality—of the original methods for these techniques and my
newly implemented adaptive methods.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Display Algorithms I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Ray Trac-
ing;

Keywords: adaptive, ray tracing, kind of cool

1 Introduction

I’m going to pretend that my primary motivation for undertaking
this project is not that I hemmed and hawed for so long that I needed
to finally settle on a final project that was doable in two weeks, but
rather that I am all sorts of intrigued by just how slow homework
three is when there’re a lot of distributed rays. The main idea be-
hind such distributed ray tracing is to send out multiple rays per
pixel/point so as to approximate Real Life effects like soft shad-
ows [Cutler 2012]. The reason, it turns out, for the aforemen-
tioned colossal waste of time is that in homework three, distributed
rays are computed/sent/shot for every single pixel, even when they
won’t contribute any extra information to the final image. With this
project, I devised and implemented tests that resulted in shooting
only as many rays as is needed to produce a high-quality image,
which of course results in a far faster rendering process, although
there is a trade-off with the quality of the finished image.

2 Related Work

The primary works that form the basis of this project are the lecture
notes on ray tracing and homework three. As for work related to
the adaptive stuff I’m actually doing: aside from first reading about
adaptive antialiasing in Wright and Lynn’s final project [Wright and
Lynn 2011], I mostly wanted to see if I could devise any of these
methods on my own (which was probably not the best idea in ret-
rospect, although I did learn more than if I had merely rotely im-
plemented e.g. [Hachisuka et al. 2008]’s methods). If you want
a refresher on ray tracing, or if you slept through that lecture, defi-
nitely check out [Cutler 2012], or if you’d rather get it directly from
the actually pretty old by now source, read [Whitted 1980].

∗yauneg@rpi.edu

3 Antialiasing

The original antialiasing method described by both Cook et al. way
back in the original distributed ray tracing paper [Cook et al. 1984]
and then this semester by Professor Barb Cutler works pretty sim-
ply: for each pixel in the image plane, shoot out into the scene a
fixed number of rays through a random point in the pixel, then av-
erage the colors returned by each ray.

3.1 Stratified Quadrant Method (SQM)

This method was originally described by Genetti and Gordon
[Genetti and Gordon 1993] and implemented last year by Wright
and Lynn in their own final project for this class. For each pixel,
one ray is shot into a random location in each quadrant (for a total
of four rays). The returned colors are subsequently averaged, and
if any quadrant’s color is different from the average by more than
some variance threshold �, then that quadrant is split into subquad-
rants and recursed upon. This process continues until either the
maximum number of recursions for each quadrant/subquadrant is
reached or the variances in all quadrants are below �. It’s worth not-
ing that this quadrantization ensures that the random points on the
pixel are picked using stratified sampling (hence the name SQM)
while all the other methods pick points uniformly at random (for
the difference between stratified and random sampling, see lecture
11 [Cutler 2012]).

3.2 Full Uniform Method (FUM)

This is a more naive method: it shoots four rays through random
points of the pixel. If the average of the colors returned by these
four rays differs from the color of a single ray through the center,
then the user-specified number of rays are sent out through uni-
formly random points in the pixel, just like in the original non-
adaptive method.

3.3 Thresholded Uniform Method (TUM)

This is initially similar to the previous method: four rays are shot
through random points of the pixels, and if they differ from the color
of the ray of the center, then four more rays are sent through random
points (for a total of eight rays). If the new average differs from the
four-ray average by more than �, then eight more rays are shot out
(for a total of sixteen). This process of doubling the number of rays
repeats until either a maximum number of rays is reached or the
average color varies from the average on the previous iteration by
less than a threshold �. In this way, the number of rays shot per pixel
which passes the test is dynamic (unlike in the previous method).

3.4 Comparison

Check the heck out of figures 3 and 4 for a thrilling comparison of
all these.

The reason why TUM is way faster than FUM is that it doesn’t
shoot nearly as many rays for the pixels that passed the test, but
the speed difference between FUM and SQM is a bit harder to
explain—it turns out that in my current implementation of SQM,



Figure 1: RIM with � = 0.01

the values from each previous iteration are disregarded, mean-
ing that although the maximum number of recursions in FUM
is three, the maximum number of rays per pixel isn’t 256, it’s
4 + 16 + 64 + 256 = 340. This problem would of course be
amplified by more recursions.

FUM and TUM produce slightly noisier/grainier images than both
the original method and SQM due to their use of uniform random
samples since there’s far more variance in where each of the four
initial test rays lands.

3.5 The Importance of �

� directly governs how many pixels pass the test which determines
if more rays are sent at them. Figure 1 shows an example of FUM
with � = 0.01—way, way more pixels need to have the maxi-
mum number of rays sent through them than in Figure 4d where
� = 0.05. Unfortunately, I haven’t yet figured out a system for
adaptively choosing epsilon, if that’s even possible; it was all trial
and error. The guiding principle, though, is that the greater � is, the
less noise will be in the final image, but the longer it’ll take, which
can be chalked up to more pixels passing that initial variance test.
This still holds true when these methods are applied to all the other
distributed effects.

4 Soft Shadows

The original soft shadows algorithm we implemented in homework
three works thusly: when a ray emanating from the eye collides
with an object in the scene, a specified number of rays (regardless of
whether these rays provide any extra contribution to the final pixel
in the image) are created from the original intersection point and
are directed to random points on the area light source. If a ray isn’t
occluded by any objects in its path, then the total color is increased
by the color of the light emanating from the source. The final color
of the pixel is the result of dividing this total by the number of rays.
As for the adaptive methods, I implemented variations of all three
of the above antialiasing strategies.

4.1 SQM

This is identical to the antialising SQM except that instead of strat-
ificatively sampling the quadrants of a pixel, it samples the quad-
rants of a light source. The quality of the resulting image, however,
is far noisier than expected, especially when considering that the
results of the antialiasing SQM aren’t significantly lamer than their
non-adaptive result. I’ve come to the conclusion that the sheer size
of the light source compared to the size of each pixel is what’s to
blame. Since antialiasing involves sampling pixels, and pixels are
much smaller than the light source, there’s a lot less variability in
the paths of the antialiasing rays. As you can see in figure 2, in-

Figure 2: A bigger light source causes more banding when using

the soft shadows SQM with � = 0.01

creasing the size of the light source causes significantly more noise
and banding.

4.2 Full Penumbra Method (FPM)

This solves the noisiness/banding problem by sending the initial
four rays (which, remember, test whether or not the point needs
more shadow rays) to the four corners of the light source (so far
I’ve only used quads as lights, but this is easily extensible to light
sources of other shapes). If none of the rays intersect any objects,
then the point’s color receives the full contribution of the light since
there’s no way it can be in shadow, and conversely, if all corners are
obscured, the point is fully in the shadow’s umbra, meaning that
the light in question doesn’t contribute even a bit toward its color.
If only some of the corners are obscured while others aren’t, that
means the point in question is in the penumbra (i.e. the part of the
shadow that’s soft). This method then naively sends the full speci-
fied number of rays. It produces an image of the exact same quality
as the full non-adaptive method since it’s guaranteed to only send
the extra shadow rays for points in a shadow’s penumbra. However,
the speed-up is only in terms of how many points need these ex-
tra rays, not in terms of how many shadow rays are shot for points
which pass the test.

4.3 Thresholded Penumbra Method (TPM)

This method solves both the noisiness problem of SQM and the
still-way-too-many-rays problem of FPM by using the same initial
penumbra test but then only iteratively shooting as many rays as are
necessary to get the final color below some variance away from the
color on the previous iteration, just like the antialiasing TUM.

4.4 Comparison

Looks like I’ve sufficiently compared these methods in the above
sections. I will re-emphasize, however, that FPM easily produces
the best image compared to the other adaptive methods. Also, I
can’t really think of any situation which would be better off with
SQM rather than FPM or TPM. Figures 5 and 6 should help you
see the differences between these methods in a hopefully not too
confusing manner. It’ll also give you a quantitative comparison of
the runtimes, which makes intuitive sense: the more points need
shadow rays, the longer it’s going to take.

5 Glossy Reflections

Glossy reflections are an extension of the standard perfect reflection
from homework three. Since we weren’t required to implement
glossiness), here’s a primer: instead of always perfectly calculat-



ing the reflection direction, the direction is perturbed based on the
roughness of the reflective material. Multiple such samples are sent
from each reflective point and then averaged together.

5.1 Adaptive Glossiness

This sends four test rays which are perturbed from the perfect direc-
tion in the same manner as the normal method; if any of them differ
from their average by more than �, then all the rest of the glossy
rays are sent and averaged. It’s basically a modification of the an-
tialiasing TUM, sending more rays until the current average color is
less than the threshold away from the last iteration’s average color.

The first obvious improvement is to maybe stratificatively sample
a segment of the hemisphere (with a size determined by the rough-
ness) around the point that points instead of merely perturbing the
reflected direction. That would probably cut down on the graini-
ness that you can see in figure 9c, which is a result of some pixels
passing the test that shouldn’t’ve thanks to randomness, and vice
versa. Oh also, figures 7 and 9 are a complete comparison of these
two methods.

6 Motion Blur

Since we also weren’t required to implement motion blur in home-
work three, my first task was to get basic motion blur working. The
basic idea is to supersample each pixel temporally. What that means
is that multiple rays are sent per pixel, each at different times, and
then averaged. An exposure time and the desired number of tempo-
ral samples are specified by the user. The timestep is computed by
dividing the exposure by the number. So that means all the temporal
samples are evenly spread out along the exposure time.

6.1 Adaptive Motion Blur

Instead of sending all the temporal rays for each pixel like in the
standard method, five initial test rays are sent out, one each at the
beginning, a quarter, half, three quarters, and all of the way through
the exposure (so the timestep is 0.25 times the exposure). If any
of the samples are different from each other, that means the pixel
experiences an object moving through it during the exposure, and
the full number of temporal rays are sent at it.

A serious limitation of my implementation is that if an object is suf-
ficiently small and moving sufficiently fast, the initial test will ac-
tually miss the object entirely—it would probably be best to adap-
tively choose how many initial test samples (at a correspondingly
adaptively-chosen timestep) are compared based on the length of
the exposure time and the size of each object. In my example im-
age, though, I made sure the objects are large enough so this isn’t
an issue.

My implementation also only deals with constant velocities. It
would be cool (and I would totally do so if I had more time / if
I had better planned my time) to extend this to handle accelerations
and then dynamically adjust the placement of samples along the
exposure so that there are more where the object is moving faster
(which I’m pretty sure would be a type of importance sampling).

As usual, q.v. figures 8 and 10.

7 Putting Some Of All Of It Together For At

Least A Couple Kind Of Impressive Images

Check ’em out: figures 11 and 12.

8 Conclusions and Further Work

So ultimately, what I’ve learned from this project is that adaptivity
greatly speeds up distributed ray tracing while, if you’re not careful,
sacrificing at least a little bit of quality.

There’s always implementing other ray tracing effects, e.g. depth
of field and refraction, plus the adaptive tests can of course use
refinements and improvements—soft shadows especially—and I’m
of the humble opinion that this project is definitely a foundation for
me to explore these. Ultimately, though, it turns out that a way, way
more advanced version of adaptive ray tracing was already explored
by Hachisuka et al. with way, way more rigor and technicality and
to far more impressive effect in [Hachisuka et al. 2008].

As for what I’d like to do from here, this project has definitely made
me more interested in ray tracing in general, especially A) how to
make the ray tracer work quickly with larger scenes. According to
lecture 11 [Cutler 2012], the real bottleneck in bigger scenes is the
massive number of objects (in our system, triangles and quads and
spheres) that need to be tested against every ray in order to deter-
mine the closest intersection, but I’ve never run into this because
the scenes I’ve dealt with only have a couple objects in them. For
larger numbers of objects, spatial data structures like the k-d tree
can greatly reduce this number of tests (about which we learned in
lecture 5 [Cutler 2012]), as described in [Fussell and Subramanian
1988]. B) I’d also really like to tackle a real-time ray tracer like
the ones we discussed in lecture. I know these wouldn’t be impres-
sive achievements since they’ve already been done before, but I’m
definitely interested in them now that I’ve taken this class.

9 Acknowledgments

It’s always fun to thank people—especially in such an official
way—so here I’ll sappily thank Professor Barb Cutler for teach-
ing this class (definitely not in the hopes of getting a better grade
on this project, I assure you); it’s been phenomenal not only be-
cause the subject matter is all sorts of interesting, but because Barb
teaches it in such an engaging way, something I’ve nowhere near
experienced with other technical classes. I had fun when I wasn’t
falling asleep during the really long powerpoints.

References

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Dis-
tributed ray tracing. ACM Transactions on Graphics 18, 3 (July),
137–145.

CUTLER, B., 2012. Ray tracing & distributed ray tracing. Ad-
vanced Computer Graphics Lecture Notes, Jan./Feb./Mar./Apr./
May.

FUSSELL, D., AND SUBRAMANIAN, K. R. 1988. Fast ray tracing
using k-d trees. Department of Computer Sciences, The Univer-

sity of Texas at Austin (Mar.).

GENETTI, J., AND GORDON, D. 1993. Ray tracing with adaptive
supersampling in object space. Graphics Interface, 70–77.

HACHISUKA, T., JAROSZ, W., WEISTROFFER, R. P., DALE, K.,
HUMPHREYS, G., ZWICKER, M., AND JENSEN, H. W. 2008.
Multidimensional adaptive sampling and reconstruction for ray
tracing. ACM Transactions on Graphics 27, 3 (Aug.).

WHITTED, T. 1980. An improved illumination model for shaded
display. Communications of the ACM 23, 6 (June), 343–349.

WRIGHT, G., AND LYNN, Z. 2011. Feature complete ray tracer.
Advanced Computer Graphics Final Project (May).



(a) No antialiasing

2.02 seconds

(b) 256 rays per pixel

512.85 seconds

(c) SQM

60.89 seconds

(d) FUM

54.6 seconds

(e) TUM

20.89 seconds

Figure 3: Comparison of antialiasing methods. There are also four

soft shadow samples per pixel (to give it something to antialias).

� = 0.05. All of them have the maximum number of rays per pixel

set at 256 so as to stay consistent with the non-adaptive method.

(a) No antialiasing (b) 256 rays per pixel

(c) SQM (d) FUM

(e) TUM

Figure 4: The same as the previous figure, except the pixels affected

by each antialiasing method are in red—the brighter the red, the

more rays were used for that pixel.



(a) Perfect shadows—no soft

shadows

1.01 seconds

(b) 256 shadows rays per point

67.73 seconds

(c) SQM

4.42 seconds

(d) FPM

11.15 seconds

(e) TPM

4.24 seconds

Figure 5: Comparison of soft shadowing methods. � = 0.01. The

last three all have 256 as the maximum number of rays per point so

as to stay consistent with the non-adaptive method.

(a) Perfect shadows—no soft

shadows

(b) 256 shadow rays per point

(c) SQM (d) FPM

(e) TPM

Figure 6: The same as the previous figure, except the points af-

fected by each soft shadowing method are in green—the brighter

the green, the more shadow rays were used at that point.



(a) Perfect reflections—no glossi-

ness

1.75 seconds

(b) 256 glossy rays per reflective

point

67.49 seconds

(c) Adaptive

29.77 seconds

Figure 7: Comparison of glossy reflection methods. � = 0.05. 256

is the maximum number of reflected rays per point so as to stay

consistent with the non-adaptive method.

(a) No motion blur

1.71 seconds

(b) 256 temporal rays per pixel

340.19 seconds

(c) Adaptive

163.89 seconds

Figure 8: Comparison of motion blur methods. 256 is the maximum

number of temporal rays per pixel so as to stay consistent with the

non-adaptive method.

(a) Perfect reflections—no glossi-

ness

(b) 256 glossy rays per reflective

point

(c) TRIM

Figure 9: The same as in figure 7, except the points affected by

each glossy reflection method are in yellow.

(a) No motion blur (b) 256 temporal rays per pixel

(c) Adaptive motion blur

Figure 10: The same as in figure 8, except the points affected by

each motion blur method are in cyan.



(a) Only antialiasing TUM

11.16 seconds

(b) Only adaptive glossiness

4.12 seconds

(c) Both antialiasing TUM and

adaptive glossiness

25.12 seconds

(d) Visualization of the adaptive

methods. Red: solely antialiased,

Yellow: solely glossied, Blue:

both.

Figure 11: A combination of antialiasing and glossiness (with a 4

constant non-adaptive soft shadow samples per point).

(a) Only antialiasing FUM

10.38 seconds

(b) Only soft shadowing FPM

12.59 seconds

(c) Both FUM and FPM

132.04 seconds

(d) Visualization of the adap-

tive methods: pixels that get an-

tialiased are in red while soft-

shadowed pixels are in green

Figure 12: A combination of antialiasing and soft shadows.


