Navier-Stokes
&
Flow Simulation

Last Time?

* Spring-Mass Systems

* Numerical Integration W
(Euler, Midpoint, Runge-Kutta)

* Modeling string, hair, & cloth

Optional Reading for Last Time:

HW2: Cloth & Fluid Simulation
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Today

* Flow Simulations in Computer Graphics
— water, smoke, viscous fluids

* Navier-Stokes Equations
— incompressibility, conservation of mass

— conservation of momentum & energy

Fluid Representations
* Basic Algorithm
 Data Representation

Flow Simulations in Graphics

» Random velocity fields

— with averaging to get simple background motion
* Shallow water equations

— height field only, can’t represent crashing waves, etc.
* Full Navier-Stokes

* note: typically we ignore surface tension and
focus on macroscopic behavior




Heightfield Wave Simulation

* Cem Yuksel, Donald H. House, and John Keyser,
“Wave Particles”, SIGGRAPH 2007

Flow in a Voxel Grid
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simulation (e.g., water
only, air only)
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Navier-Stokes Equations

¢ conservation of momentum:

gravity (& other external forces)
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acceleration Convection: internal movement drag
in a fluid (e.g., caused by variation

in density due to a transfer of heat)
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Today

* Flow Simulations in Computer Graphics
 Navier-Stokes Equations
* Fluid Representations

Basic Algorithm

Data Representation

Modeling the Air/Water Surface

* Volume-of-fluid tracking i

* Marker and Cell (MAC)

¢ Smoothed Particle
Hydrodynamics (SPH)

Comparing Representations

* How do we render the resulting surface?

* Are we guaranteed not to lose mass/volume?
(is the simulation incompressible?)

* How is each affected by the grid resolution
and timestep?

» Can we guarantee stability?




Volume-of-fluid-tracking

» Each cell stores a scalar value indicating that
cell’s “full”-ness

+ preserves volume
- difficult to render
- very dependent on grid resolution

Marker and Cell (MAC)

» Harlow & Welch, "Numerical calculation of
time-dependent viscous incompressible flow
of fluid with free surface”, The Physics of

IERH:
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Fluids, 1965.
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*  Volume marker particles identify location of

fluid within the volume

(Optional) surface marker particles track the
detailed shape of the fluid/air boundary

« But... marker particles don’t have or
represent a mass/volume of fluid

+ rendering

does not preserve volume

dependent on grid resolution

Smoothed Particle Hydrodynamics (SPH)

 Each particle represents a specific mass of fluid

* “Meshless” (no voxel grid) b
* Repulsive forces between .
neighboring particles . Q

maintain constant volume . . .
+ no grid resolution concerns (now accuracy
depends on number/size of particles)
+ volume is preserved*
+ render similar to MAC

- much more expensive (particle-particle interactions)

Demos l |
« Nice Marker I r‘ . - |

and Cell (MAC)
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http://panoramix.ift.uni.wroc.pl/~maq/eng/cfdthesis.php
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http://mme.uwaterloo.ca/~fslien/free_surface/free_surface.htm

Reading for Today

» “Realistic Animation of Liquids”,
Foster & Metaxas, 1996

Today

* Flow Simulations in Computer Graphics
* Navier-Stokes Equations

* Fluid Representations

» Basic Algorithm

« Data Representation




Each Grid Cell Stores:

» Velocity at the cell faces (offset grid)
* Pressure

k+1/2

« List of particles
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Initialization

* Choose a voxel resolution

» Choose a particle density

 Create grid & place the particles

* Initialize pressure & velocity of each cell
* Set the viscosity & gravity

* Choose a timestep & go!

At each Timestep:

* Identify which cells are Empty,
Full, or on the Surface

» Compute new velocities

* Adjust the velocities to maintain
an incompressible flow

* Move the particles
— Interpolate the velocities at the faces

* Render the geometry and repeat!

Empty, Surface & Full Cells
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At each Timestep:

* Identify which cells are Empty,
Full, or on the Surface

« Compute new velocities

* Adjust the velocities to maintain
an incompressible flow

* Move the particles
— Interpolate the velocities at the faces

» Render the geometry and repeat!

Compute New Velocities
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Note: some of these values are the average velocity
within the cell rather than the velocity at a cell face




At each Timestep:

* Identify which cells are Empty,
Full, or on the Surface

« Compute new velocities
* Adjust the velocities to maintain
an incompressible flow
* Move the particles
— Interpolate the velocities at the faces
» Render the geometry and repeat!

Adjusting the Velocities

* Calculate the divergence of the cell
(the extra in/out flow)
The divergence is used
to update the pressure
within the cell
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Adjust each face velocity
uniformly to bring the
divergence to zero N

Iterate across the entire Image from
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grid until divergence is < ¢

Calculating/Eliminating Divergence
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initial flow field after 1 iteration after many iterations

(results will vary with different calculation order)

Handing Free Surface with MAC

 Divergence in
surface cells:
Is divided
equally
amongst
neighboring
empty cells
Or other
similar
strategies?

Zero out the
divergence &
pressure in
empty cells
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At each Timestep:

* Identify which cells are Empty,
Full, or on the Surface

» Compute new velocities

* Adjust the velocities to maintain
an incompressible flow

* Move the particles
— Interpolate the velocities at the faces

» Render the geometry and repeat!

Velocity Interpolation

» In 2D: For each axis, find the 4 closest face velocity samples:
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Original image from Foster & Metaxas, 1996
e In3D... find 8 closest face velocities in each dimension

* NOTE: The complete implementation isn’t particularly elegant




Stable Fluids

e “Stable Fluids”,
Jos Stam,
SIGGRAPH 1999.

Ron Fedkiw http://physbam.stanford.edu/~fedkiw/

 Enright, Marschner, & Fedkiw, “Animation and Rendering of
Complex Water Surfaces”, SIGGRAPH 2002.

* Guendelman, Selle, Losasso, & Fedkiw, “Coupling Water and
Smoke to Thin Deformable and Rigid Shells”, SIGGRAPH 2005.

Reading for Friday:

“Real-time Large-deformation Substructuring”,
Barbic & Zhao, SIGGRAPH 2011

root &bt

Smoke Simulation & Rendering

“Visual Simulation of Smoke”
Fedkiw, Stam & Jensen
SIGGRAPH 2001

Reading for Friday:

"Melting and Flowing"
Carlson, Mucha, Van Horn IIT & Turk
Symposium on Computer Animation 2002

Click to Play Movie




