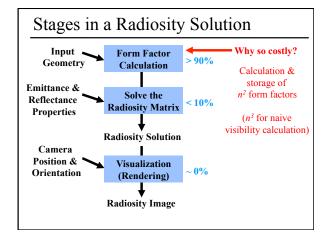
The Rendering Equation & Monte Carlo Ray Tracing

Last Time? • Local Illumination – BRDF – Ideal Diffuse Reflectance – Ideal Specular Reflectance – The Phong Model • Radiosity Equation/Matrix • Calculating the Form Factors

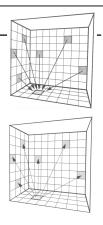
From Last Time

- · Advanced Radiosity
 - Progressive Radiosity
 - Adaptive Subdivision
 - Discontinuity Meshing
 - Hierarchical Radiosity

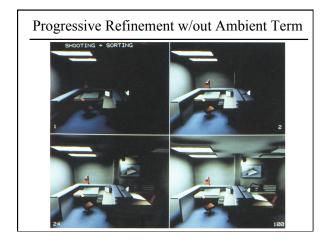


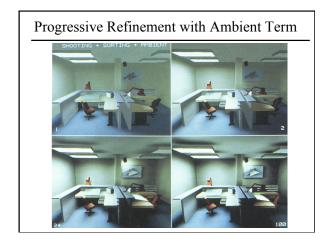
Progressive Refinement

- Goal: Provide frequent and timely updates to the user during computation
- Key Idea: Update the entire image at every iteration, rather than a single patch
- How? Instead of summing the light received by one patch, distribute the radiance of the patch with the most undistributed radiance.



Reordering the Solution for PR Shooting: the radiosity of all patches is updated for each iteration: $\begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix} = \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix} + \begin{bmatrix} \cdots \\ \rho_1 F_{11} \\ \cdots \\ \rho_2 F_{2i} \\ \vdots \\ B_n \end{bmatrix} = \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix} + \begin{bmatrix} \cdots \\ \rho_1 F_{11} \\ \vdots \\ B_n \end{bmatrix} + \begin{bmatrix} \vdots \\ B_n \end{bmatrix} = \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix} + \begin{bmatrix} \cdots \\ \rho_1 F_{11} \\ \vdots \\ B_n \end{bmatrix} = \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_n \end{bmatrix} + \begin{bmatrix} \cdots \\ \rho_2 F_{2i} \\ \vdots \\ B_n \end{bmatrix} = \begin{bmatrix} B_1 \\ \vdots \\ B_n \end{bmatrix} + \begin{bmatrix} \cdots \\ \rho_n F_{ni} \end{bmatrix} + \begin{bmatrix} \vdots \\ B_n \end{bmatrix} = \begin{bmatrix} B_1 \\ \vdots \\ B_n \end{bmatrix} + \begin{bmatrix} \vdots \\ B_n \end{bmatrix}$





From Last Time

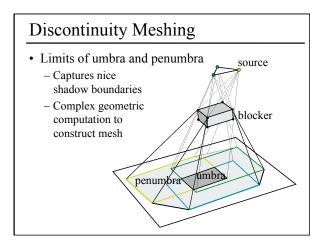
- Advanced Radiosity
 - Progressive Radiosity
 - Adaptive Subdivision
 - Discontinuity Meshing
 - Hierarchical Radiosity

Increasing the Accuracy of the Solution

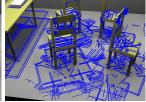
What's wrong with this picture?

- Image quality is a function of patch size
- Compute a solution on a uniform initial mesh, then refine the mesh in areas that exceed some error tolerance:
 - shadow boundaries
 - other areas with a high radiosity gradient

Adaptive Subdivision of Patches Coarse patch solution (145 patches) Improved solution (1021 subpatches) Adaptive subdivision (1306 subpatches)



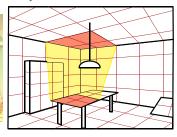
Discontinuity Meshing



"Fast and Accurate Hierarchical Radiosity Using Global Visibility" Durand, Drettakis, & Puech 1999

Hierarchical Radiosity

- Group elements when the light exchange is not important
 - Breaks the quadratic complexity
 - Control non trivial, memory cost



Practical Problems with Radiosity

- Meshing
 - memory
 - -robustness
- Form factors
- computation
- Diffuse limitation
 - extension to specular takes too much memory

Cow-cow form factor?

Questions?

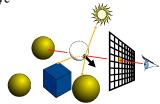
Lightscape http://www.lightscape.com

Today

- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Monte-Carlo Integration
- Sampling
- Monte-Carlo Ray Tracing vs. Path Tracing

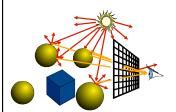
Does Ray Tracing Simulate Physics?

- No.... traditional ray tracing is also called "backward" ray tracing
- In reality, photons actually travel from the light to the eye



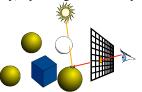
Forward Ray Tracing

- Start from the light source
 - But very, very low probability to reach the eye
- What can we do about it?
 - Always send a ray to the eye.... still not efficient

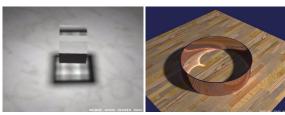


Transparent Shadows?

- What to do if the shadow ray sent to the light source intersects a transparent object?
 - Pretend it's opaque?
 - Multiply by transparency color?
 (ignores refraction & does not produce caustics)
- · Unfortunately, ray tracing is full of dirty tricks



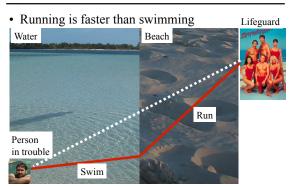
Is this Traditional Ray Tracing?



Images by Henrik Wann Jensen

 No, Refraction and complex reflection for illumination are not handled properly in traditional (backward) ray tracing

Refraction and the Lifeguard Problem

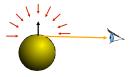


Today

- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Monte-Carlo Integration
- Sampling
- Monte-Carlo Ray Tracing vs. Path Tracing

The Rendering Equation

- Clean mathematical framework for lighttransport simulation
- At each point, outgoing light in one direction is the integral of incoming light in all directions multiplied by reflectance property

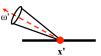


Reading for Today:

• "The Rendering Equation", Kajiya, SIGGRAPH 1986



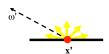
The Rendering Equation



 $L(\mathbf{x}', \mathbf{\omega}') = E(\mathbf{x}', \mathbf{\omega}') + \int \rho_{\mathbf{x}'}(\mathbf{\omega}, \mathbf{\omega}') L(\mathbf{x}, \mathbf{\omega}) G(\mathbf{x}, \mathbf{x}') V(\mathbf{x}, \mathbf{x}') d\mathbf{A}$

 $L\left(x',\omega'\right)$ is the radiance from a point on a surface in a given direction ω'

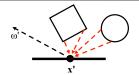
The Rendering Equation



 $L(x',\omega') = \underbrace{E(x',\omega')}_{} + \int \rho_{x'}(\omega,\omega')L(x,\omega)G(x,x')V(x,x') \; dA$

 $E(x',\omega')$ is the emitted radiance from a point: E is non-zero only if x' is emissive (a light *source*)

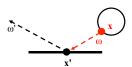
The Rendering Equation



 $L(x',\omega') = E(x',\omega') + \int \rho_{x'}(\omega,\omega')L(x,\omega)G(x,x')V(x,x') dA$

Sum the contribution from all of the other surfaces in the scene

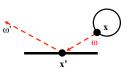
The Rendering Equation



 $L(x',\omega') = E(x',\omega') + \int \rho_{x}(\omega,\omega') \frac{L(x,\omega)}{L(x,\omega)} G(x,x') V(x,x') dA$

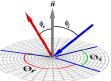
For each x, compute $L(x, \omega)$, the radiance at point x in the direction ω (from x to x')

The Rendering Equation

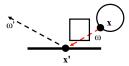


 $L(x',\omega') = E(x',\omega') + \int_{\rho_{x'}(\omega,\omega')} L(x,\omega)G(x,x')V(x,x') dA$

scale the contribution by $\rho_x(\omega,\omega')$, the reflectivity (BRDF) of the surface at x'



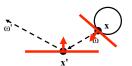
The Rendering Equation



 $L(x',\omega') = E(x',\omega') + \int \rho_{x'}(\omega,\omega')L(x,\omega)G(x,x') \underbrace{V(x,x')}_{} dA$

For each x, compute V(x,x'), the visibility between x and x': 1 when the surfaces are unobstructed along the direction ω , 0 otherwise

The Rendering Equation

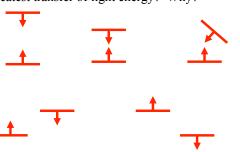


 $L(x',\omega') = E(x',\omega') + \int \rho_{x'}(\omega,\omega')L(x,\omega)G(x,x')V(x,x') dA$

For each x, compute G(x, x'), which describes the on the geometric relationship between the two surfaces at x and x'

Intuition about G(x,x')?

• Which arrangement of two surfaces will yield the greatest transfer of light energy? Why?



Rendering Equation → Radiosity

 $L(x',\omega') = E(x',\omega') + \int \rho_{x'}(\omega,\omega') L(x,\omega) G(x,x') V(x,x') \ dA$ $\downarrow \quad \text{Radiosity assumption:} \\ \text{perfectly diffuse surfaces (not directional)}$ $B_{x'} = E_{x'} + \rho_{x'} \int B_{x} G(x,x') V(x,x')$ $\downarrow \quad \text{discretize}$

1 glossy sample per pixel 256 glossy samples per pixel

Today

- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Monte-Carlo Integration
 - Probabilities and Variance
 - Analysis of Monte-Carlo Integration
- Sampling
- Monte-Carlo Ray Tracing vs. Path Tracing

Monte-Carlo Computation of π

- Take a random point (x,y) in unit square
- Test if it is inside the 1/4 disc
 - $\text{ Is } x^2 + y^2 < 1?$
- Probability of being inside disc?
 - area of ¼ unit circle / area of unit square
 π /4

- $\pi \approx 4$ * number inside disc / total number
- The error depends on the number or trials

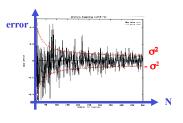
Convergence & Error

- Let's compute 0.5 by flipping a coin:
 - 1 flip: 0 or 1
 - \rightarrow average error = 0.5
 - 2 flips: 0, 0.5, 0.5 or 1
 - \rightarrow average error = 0. 25
 - -4 flips: 0 (*1),0.25 (*4), 0.5 (*6), 0.75(*4), 1(*1) → average error = 0.1875
- Unfortunately, doubling the number of samples does not double accuracy

Another Example:

$$I = \int_0^1 5x^4 dx$$

- We know it should be 1.0
- In practice with uniform samples:



Review of (Discrete) Probability

- Random variable can take discrete values x_i
- Probability p_i for each x_i

$$0 < p_i < 1, \Sigma p_i = 1$$

- Expected value $E(x) = \sum_{i=1}^{n} p_i x_i$
- Expected value of function of random variable
 - f(x_i) is also a random variable

$$E[f(x)] = \sum_{i=1}^{n} p_i f(x_i)$$

Variance & Standard Deviation

- Variance σ^2 : deviation from expected value
- Expected value of square difference

$$\sigma^2 = E[(x - E[x])^2] = \sum_i (x_i - E[x])^2 p_i$$

• Also

$$\sigma^2 = E[x^2] - (E[x])^2$$

• Standard deviation σ: square root of variance (notion of error, RMS)

Monte Carlo Integration

- Turn integral into finite sum
- Use *n* random samples
- As *n* increases...
 - Expected value remains the same
 - Variance decreases by n
 - Standard deviation (error) decreases by $\frac{1}{\sqrt{n}}$
- Thus, converges with $\frac{1}{\sqrt{n}}$

Advantages of MC Integration

- Few restrictions on the integrand
 - Doesn't need to be continuous, smooth, ...
 - Only need to be able to evaluate at a point
- Extends to high-dimensional problems
 - Same convergence
- · Conceptually straightforward
- Efficient for solving at just a few points

Disadvantages of MC Integration

- Noisy
- · Slow convergence
- Good implementation is hard
 - Debugging code
 - Debugging math
 - Choosing appropriate techniques
- Punctual technique, no notion of smoothness of function (e.g., between neighboring pixels)

Questions?

• "A Theoretical Framework for Physically Based Rendering", Lafortune and Willems, Computer Graphics Forum, 1994.

Figure B: An indirectly illuminated scene rendered using path tracing and bidirectional path tracing respectively. The latter method results in visibly less noisefor the same amount of work.

Today

- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Monte-Carlo Integration
- Sampling
 - Stratified Sampling
 - Importance Sampling
- · Monte-Carlo Ray Tracing vs. Path Tracing

Domains of Integration

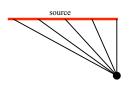
- Pixel, lens (Euclidean 2D domain)
- Time (1D)
- Hemisphere
 - Work needed to ensure *uniform* probability

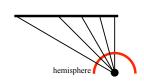
Example: Light Source

- We can integrate over surface or over angle
- But we must be careful to get probabilities and integration measure right!

Sampling the source uniformly

Sampling the hemisphere uniformly



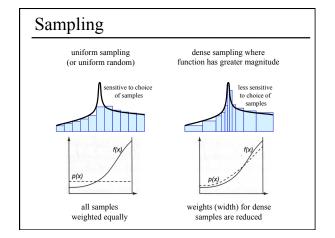


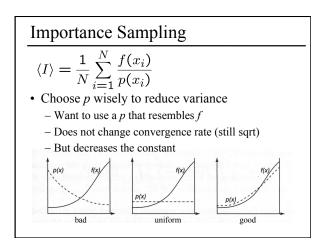
Stratified Sampling

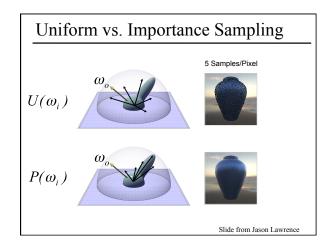
- With uniform sampling, we can get unlucky
 - E.g. all samples in a corner
- To prevent it, subdivide domain Ω into non-overlapping regions Ω_i
 - Each region is called a stratum
- Take one random samples per $\Omega_{\rm i}$

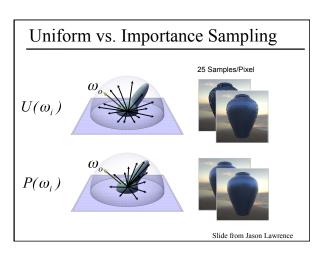
	•	•	•	•
	•	•	•	•
	•	•	•	•
	•	•	•	•

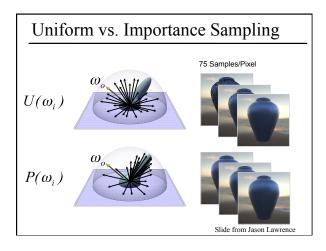
Stratified Sampling Example					
$f(x) = e^{\sin(3x^2)}$ $\frac{N}{1}$ $\frac{1}{1}$ $\frac{1}{2.75039}$ 10 1.9893 100 1.79139 1000 1.75146 10000 1.77313	$f(x) = e^{\sin(3x^2)}$ $\frac{N}{1}$ 1 2.70457 10 1.72858 100 1.77925 1000 1.77606 10000 1.77610				
100000 1.77862	100000 1.77610				
Unstratified $O(1/\sqrt{N})$	Stratified $O(1/N)$				
	Slide from Henrik Wann Jensen				

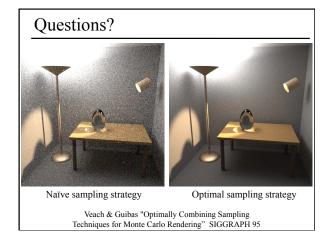












Today

- Does Ray Tracing Simulate Physics?
- The Rendering Equation
- Monte-Carlo Integration
- Sampling
- Monte-Carlo Ray Tracing & Path Tracing

Ray Casting • Cast a ray from the eye through each pixel

• Cast a ray from the eye through each pixel • Trace secondary rays (light, reflection, refraction)

