
Tectonic Plate Simulation on Procedural Terrain

Daniel Benedetti

Rensselaer Polytechnic Institute

Evan Minto

Rensselaer Polytechnic Institute

Figure 1: A basic ridge formed by two plates colliding

Abstract

This paper seeks to model the movements of

tectonic plates and simulate the effects of tectonic

collisions on terrain. Simple 2-D plate collisions

generate a Gaussian function for displacement, and

programmable shaders enable vertex-texture

mapping and multitexturing effects to show a

detailed terrain visualization.

1 Motivation

Under the Earth’s surface lies a network of large

tectonic plates. The boundaries between the plates

are known as faults. These plates are constantly

moving, colliding with or separating from their

neighboring plates. The effects of this movement

are called as tectonic activity, with the greatest

effects occurring closest to the fault lines. Some

major geological events, such as earthquakes, are

caused by large, sudden plate movements within

plates. Minor movement in the plates will not likely

cause immediate change, but sustained, minor

tectonic activity is responsible for shaping the face

of the Earth, such as moving continents and creating

mountains.

It is currently possible to approximate the effects

that various forms of tectonic activity will have on a

terrain surface over time. Namely, one would could

construct a relationship between vertical

displacement and time for a given location.

Numbers alone, however, do not provide insight

into the geological changes that occur as a result of

this displacement. The purpose of this project is to

create a simple simulation that models the effects of

long-term tectonic activity near a fault line on a

terrain surface.

2 Related Work

A major inspiration for this paper was Lauri

Viitanen’s work on tectonic plate-based terrain

generation in Physically Based Terrain Generation:

Procedural Heightmap Generation Using Plate

Tectonics. Viitanen’s simulation is far more

complex and more difficult to replicate than this

one, but using 2-D plates and measuring the

displacement based on overlap regions is an

extremely intuitive way to model plate collisions.

Throughout the course of the year, Daniel has been

doing research under the guidance of W. Randolph

Franklin. Franklin’s research interests include the

visualization of geological data. As a result, Daniel

has done work with visualization of terrain surface

data. The shader visualization in the fourth

Advanced Computer Graphics homework

assignment served as an inspiration for several

features utilized in the visualization, particularly in

the fragment shader. Additionally, a general concept

for the steps involved in creating the terrain surface

came from a presentation by Nowrouzezahrai

[Nowrouzezahrai]. The paper on Geometry

Clipmaps [Losasso et al. 2004] provided great

insight on how to efficiently handle scale on large

terrain surfaces. Lastly, the Sky Illumination Model

[Kennelly et al. 2006] paper provided a realistic

alternative to the standard fixed-position light

source used in traditional terrain renders.

3 Simulation

Figure 2: Displacement applied on the base mesh,

without applying shaders. Plates visualized in blue

and red.

The plate simulation is based on a modified version

of the simple model proposed by Viitanen [2012].

The program first creates two plates “underneath”

the mesh, represented as 2-D rectangles along the

XZ plane (these can be specified using only two

vertices, the top-left and bottom-right, as the rest

can be inferred). These plates are given an initial

velocity along the X axis so that they will

eventually collide or diverge.

When the plates do collide, they create a

displacement on the mesh above them. This is

achieved by creating an “overlap plate,” an object

that acts similarly to a plate but actually represents

the area of overlap between the two plates. At each

timestep, the vertices in the mesh query the

simulation for the magnitude of their displacement,

and the simulation returns a value based on the size

and position of this overlap region.

3.1 Overlap Regions

This overlap region is an essential part of the

simulation. Luckily, creating an overlap region is

extremely straightforward. Depending on how the

plates are oriented, however, the calculation needs

to be done slightly differently. If Plate 1 is to the

left of Plate 2, the rightmost “vertices” (remember

only one actually exists) of Plate 1 will be

combined with the leftmost “vertices” of Plate 2. If

they are reversed, then Plate 1 will use its leftmost

ones, and Plate 2 its rightmost.

To calculate displacement magnitude, the

simulation creates a smooth gaussian function

across the XY plane, using the velocities of the

plates, the area of the overlap, and the midpoint of

the overlap to create the curve of the function. More

specifically, the function is defined as:

 –

 (1)

Where Y is the displacement in the Y direction, M is

a modifier to modulate the size of the displacement,

A is the area of the overlap region, V1 and V2 are

the velocities of the plates, Px is the X position of

the point being displaced, Cx is the X position of

the center of the overlap region, and W is the width

of the overlap region.

Figure 3: Two plates move away from each other at

high speed, creating a sharp gorge.

3.2 Negative Overlaps

In a plate tectonics simulation it is important not

only to model plate collisions, but also plate

divergence. To represent this separation of plates,

the simulation uses “negative overlaps.” These are

simply overlap regions that, rather than representing

the area the two plates share, represents the area

between them. This luckily requires very little

modification of the collision-based overlap code,

and in fact only requires the addition of a boolean

called “empty” that represents whether the plate is

empty (a negative overlap) or full (a positive

overlap). When the overlap is empty, the gaussian

function for displacement is flipped, thus creating

negative displacement in the areas where the plates

diverge.

3.3 Running the Simulation

At each timestep, the simulation moves the two

plates based on their velocities and applies forces.

Namely, a friction force is added to slow down plate

movement and allow the simulation to converge.

Whenever a plate moves (whether or not it is

colliding with another plate), it receives a friction

force proportional to its velocity and the area of

overlap (even if it’s negative). This force makes the

plates “grind to a halt” over the course of the

simulation.

Once the plates are moved and forces are added, the

overlap region is recomputed and the update ends.

From here the rendering side of the application

makes queries about displacement values and feeds

them into the shaders.

Figure 4: A series of fault points in these plates

create a jagged edge in the resulting mesh.

3.4 Fault Points

An extension to these basic techniques was also

added, allowing for simple modeling of uneven

plate boundaries. Instead of only looking at two

plates flush against each other, this model selects

specific points on the plate edge and shifts them

along the X axis to create perturbations in the

boundary. These points are called “fault points,”

and the simulation using them is called the “Fault

Points Method.”

Fault points somewhat complicate the

representation of plates and computation of overlap

regions. Instead of only using two points for the

plate rectangle (as mentioned previously), this

method adds fault points along the plate edge in

addition to the bounding box points. The fault

points include one on the top and bottom of the

plate (maximum and minimum Z values) as well as

points in between. Since overlap regions are bound

on both sides by fault points — unlike plates, which

have three straight sides and one jagged side —

they must be represented differently. With the Fault

Points Method, each overlap region is specified by a

series of fault points representing the midpoint of

the overlap and a width value. The area of this

region is actually equal to the area of an equivalent

straight edge, since a parallelogram and a rectangle

with the same width and height have the same area.

Finding the displacement with the Fault Points

Method involves getting a different midpoint for the

overlap depending on the position of the point

sending the query. The program finds the nearest

fault point in the overlap (nearest in terms of Z

only), then picks out the next closest point. The

appropriate point along the overlap’s jagged central

line can be determined by determining the

intersection between two lines: the line between the

two closest points and the line representing all

points with the same Z value as the point sending

the query. With this intersected point (the

equivalent point along the central line of the

overlap), the gaussian function’s midpoint can be

shifted along the X axis to create a curved

displacement shape across the overall mesh.

4 Visualization

The second portion of the terrain simulator is

graphical visualization. The purpose of this aspect

of the project is to display the effects that the

simulated tectonic activity would have on a

supplied terrain surface. This visualization utilizes

several graphical techniques in order to emphasize

the displacement applied to the terrain by the

simulation. These techniques include

multitexturing, vertex-texture mapping, and semi-

procedural textures.

4.1 Framework and Mesh

The basic requirements for this visualization were

the ability to render planar meshes, manipulate

vertex locations for these meshes, and animate these

vertex displacements. For this reason, the fourth

homework assignment was used as the foundation

for this project. Mesh loading and animation were

already present within the foundation code.

Additions were made to support vertex

displacement, and several unused aspects, such as

shadow volumes and the stencil buffer, were

removed. Additionally, the vertex buffer objects

(VBOs) for the primary mesh were modified to

support the storing of texture values.

The mesh is a simple flat plane, but care was taken

in the construction of these meshes. This became

more of a challenge than had been anticipated. After

attempting to write an .obj generator and then trying

various tools, it was determined that the Blender

software package was capable of creating the

required mesh. Blender was used to create a plane,

which was then triangulated. The plane was then

subdivided to create meshes of higher density. The

primary target mesh is called flat256.obj, while a

smaller test mesh is called flat16.obj. Their

attributes are as follows:

flat16.obj Vertices:

 Triangles:

flat256.obj Vertices:

 Triangles:

The system would support larger mesh sizes. The

displacement computation, however, is not

parallelized, and larger meshes would not be

capable of producing real-time animations.

Figure 5: Height map applied as both texture and

vertex-texture displacement.

4.2 Textures

Textures are utilized extensively in the

visualization. To be precise, five textures are loaded

into the visualization: a height map, a normal map,

a stone bitmap, a snow bitmap, and a grass bitmap.

After finding a height map, the corresponding

normal map was created using the CrazyBump

software package. Attempts were originally made to

generate the normal within the shader, but a proper

normal calculation would have required access to

adjacent vertices. The size of the height map and

normal map are not necessarily governed or

constrained by the size of the mesh. It did, however,

seem logical to select these meshes such that each

pixel corresponds to one square face (two triangle

faces) of the mesh to create a one-to-one texture

mapping. Large images were used for

the stone, snow, and grass textures in order to

minimize pixelation artifacts.

OpenGL by default does not provide the

capability of loading textures. For this reason,

several texture loading software packages were

considered. Difficulties in including the package

with cmake led to searching for simple source for

loading a texture instead. The texture loader that

was found works specifically on 24-bit BMP format

images, and is inspired by the texture loader

described by Guha [2010].

The most time-consuming portion of the

visualization was properly placing the textures into

GLSL. As the process required several steps, it was

default to determine the portion responsible for

causing problems. The texture coordinates first

needed to be specified in the creation of the VBO.

After applying modulation and filtering settings, the

texture was then bound in OpenGL. Each texture

was then mapped to a corresponding sampler2d

object in the shaders. The following code snippet

shows the binding of the height map texture, stored

in "texture[0]", to the sampler2d object

"terrainMap" in the vertex shader.

 // Height Map
 glActiveTexture(GL_TEXTURE0);
 GLint mapLoc =

glGetUniformLocationARB(GLCanvas::program,
"terrainMap");

 glBindTexture(GL_TEXTURE_2D, texture[0]);
 glUniform1iARB(mapLoc, 0);

4.3 Vertex Shader

The vertex shader is responsible for vertex-texture

mapping, which differs from some of the traditional

forms of texture mapping. Unlike bump mapping,

this causes an actual change to the geometry and

produces realistic silhouettes. Unlike displacement

mapping, this effect does not provide features such

as self-occlusion and self-shadows. The per-vertex

displacement is calculated based on the color

attributes for the associated height map pixel. This

displacement is then added directly to y-component

of the vertex position.

The newly added normals from the vertex-

texture mapping, loaded into the vertex shader as a

normal map, needed to be combined with the

normals of the actual vertex positions, which

change during the course of the simulation.

Additionally, the vertex normals utilize Gouraud

shading, and as such, cannot be computed within

the vertex shader. It was then quite difficult to

compute the resulting normal from the combined

vertex normal and normal map. As a workaround,

the two normals are simply averaged, which

produce satisfactory results.

Figure 6: A height map, with corresponding normal

map created using CrazyBump.

4.4 Fragment Shader

The fragment shader is responsible for selecting

pixel color from a texture lookup, on a per-pixel

basis. Simple shading is used, with a single

stationary light source. The ambient component is

kept to a minimal, and the majority of the lighting

seen is diffuse. Basic specular lighting is

implemented, but the effect was kept to a minimal.

Multitexturing is the result of combining multiple

textures on a single surface. In this case, the stone,

snow, and grass textures are each sampled. The

worldspace y-position is then utilized in order to

determine which texture of the three to utilize, with

snow selected for high height values, stone selected

for middle height values, and grass selected for low

height values. These height values are dynamic, and

as such, the texture is calculated procedurally and

updates with the simulation.

Perlin noise is utilized in order to create a blended

transition area at the height boundaries between two

textures. As seen in Figure 7, the gradual transition

is more natural and less startling than the hard

boundary line. Perlin noise is additionally used to

adjust the normal for variations in the specular

lighting.

Figure 7: View of the snow-stone height boundary.

Left without Perlin noise, right with Perlin noise

4.5 Views

The visualization offers several viewing options.

Upon startup of the animation, the rendered scene

shows the height map applied as a texture to the flat

plane. Additionally, it shows the locations of the

tectonic plates situated under the terrain surface,

which can be toggled on or off. The shaders can

then be enabled, which will displace the terrain and

apply the procedural multitexture. The animation

can be run while in either of these views.

5 Results

The program was tested on a Intel Core 2 Duo CPU

at 2.66 GHz and an NVIDIA GeForce 9600M GT

256 MB GPU, which has 32 cores at 120 MHz. On

the 16x16 mesh the program ran in real-time, but on

the 256x256 mesh the program slowed to

approximately 3 frames per second.

Included in this paper are a number of images from

the program, showing a variety of configurations of

plates, velocities, fault points, and shader inputs to

show the range of plate dynamics and terrain

renderings the program can create.

The Gaussian function in the simulation tends to

create a smooth curve that changes fairly

significantly depending on the position and size of

the overlap region, as seen in Figure 1, and the

addition of Perlin noise adds some crucial variation

to the displacement values.

Fault points create sharp, interesting discontinuities,

as seen in Figure 4, but the variation is more than

expected, and could probably use some tweaking to

create smoother displacement values.

The visualization, when loaded and rendered prior

to the simulation, will produce a result such as that

found in Figure 8. As the simulation runs, the

procedural texture will dynamically update to select

which texture to display for each pixel on the terrain

surface. A close-up view of the terrain can be seen

in Figure 9.

Figure 8: Complex terrain before plate movement.

Figure 9: Close-up of complex terrain after plate

movement and vertex displacement.

6 Limitations and Future Work

Tectonic activity is capable of producing a large

variety of effects, and can occur under conditions

which are not represented in this simulation. The

simulation is limited to focusing on an edge

between two plates, and therefore, cannot model

tectonic effects occurring at interfaces containing

more than two plates. Additionally, the model

presented is not capable of simulating short-term,

large tectonic events such as earthquakes. An

avenue of future work would be to generate a

timeline of geological events, and to display the

occurrence of the events as the simulation runs.

This would include both large and small effects

caused by tectonic activity.

The simulation utilizes a 2-D model for the

interactions between tectonic plates. Realistic

geological changes that take place as a result of

tectonic activity are too complicated to model using

a simple 2-D structure. An alternate approach would

be to simulate the rock in the Earth’s crust as an

extremely viscous fluid. The tectonic effects would

then be modeled by forces being applied to this

fluid.

While shaders are utilized for this project, the

simulation runs on a single thread on the CPU. The

simulation is CPU bound, and is number of vertices

in the terrain mesh ultimately serves as the limiting

factor in the size of the simulation. As computations

occur independently for each vertex displacement,

the simulation is embarrassingly parallel. Use of

multiple CPU threads or the GPU would allow for

larger and denser meshes to be utilized.

As the vertices are displaced both in OpenGL and in

GLSL, normal maps and a workaround were

utilized in place of computing the proper normals

for each vertex. This ultimately limited the

capability for interesting lighting effects, as such

effects would place emphasis on the flaws in the

normals.

An avenue for future visualization work would be to

place a water level line. Any terrain that falls below

the water level line would be filled with water. A

realistic water simulation would be ideal, but a

simple approach would be to create textured solid

geometry to fill the space. Adding realistic water

effects to the geological timeline could produce

interesting effects caused by large tectonic events,

including the creation of waterfalls.

Figure 10: Proper scaling was a major concern.

Here noise values have not been correctly scaled,

resulting in widely divergent vertex displacements.

7 Conclusions

This project was successful in the creation of a

physically plausible simulation of the long-term

effects of tectonic activity. Geological effects are

modeled using simple geography and physics. The

graphical rendering aspect provides a visualization

of the geological changes that occur over time as a

result of the plate movement.

8 Contribution Summary

Daniel Benedetti’s primary contribution was the

visualization code, including meshes, textures, and

shaders. Additional time was spent aiding in the

debugging of the simulation code, for a total of

approximately 60 hours of work on the project.

Evan Minto created the plate simulation code, and

helped debug some of the shader code, for a total of

approximately 40 hours of work on the project.

References

Guha, S. 2010. Computer Graphics Through

OpenGL: From Theory to Experiments,

Chapman and Hall. ISBN #1439846200.

Kennelly, P. J., and Stewart, A. J. 2006. A Uniform

Sky Illumination Model to Enhance Shading of

Terrain and Urban Areas, Cartography and

Geographic Information Science, 33:1, 21-36.

Losasso, F., Hoppe, H. 2004. Geometry Clipmaps:

Terrain rendering using nested regular grids,

ACM Trans. Graphics (SIGGRAPH), 23(3).

Nowrouzezahrai, D., 2009. Terrain Shader

presentation, ETH Game Programming

Laboratory.

<http://graphics.ethz.ch/teaching/gamelab11/co

urse_material/lecture06/XNA_Shaders_Terrain.

pdf>

Viitanen, Lauri, 2012. Physically Based Terrain

Generation: Procedural Heightmap Generation

Using Plate Tectonics. Bachelor of Engineering

thesis, Helsinki Metropolia University of

Applied Sciences.

