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Figure 1: A basic ridge formed by two plates colliding

Abstract 

This paper seeks to model the movements of 

tectonic plates and simulate the effects of tectonic 

collisions on terrain. Simple 2-D plate collisions 

generate a Gaussian function for displacement, and 

programmable shaders enable vertex-texture 

mapping and multitexturing effects to show a 

detailed terrain visualization. 

1 Motivation 

Under the Earth’s surface lies a network of large 

tectonic plates. The boundaries between the plates 

are known as faults. These plates are constantly 

moving, colliding with or separating from their 

neighboring plates. The effects of this movement 

are called as tectonic activity, with the greatest 

effects occurring closest to the fault lines. Some 

major geological events, such as earthquakes, are 

caused by large, sudden plate movements within 

plates. Minor movement in the plates will not likely 

cause immediate change, but sustained, minor 

tectonic activity is responsible for shaping the face 

of the Earth, such as moving continents and creating 

mountains. 

It is currently possible to approximate the effects 

that various forms of tectonic activity will have on a 

terrain surface over time. Namely, one would could 

construct a relationship between vertical 

displacement and time for a given location. 

Numbers alone, however, do not provide insight 

into the geological changes that occur as a result of 

this displacement. The purpose of this project is to 

create a simple simulation that models the effects of 

long-term tectonic activity near a fault line on a 

terrain surface. 

2  Related Work 

A major inspiration for this paper was Lauri 

Viitanen’s work on tectonic plate-based terrain 

generation in Physically Based Terrain Generation: 

Procedural Heightmap Generation Using Plate 

Tectonics. Viitanen’s simulation is far more 

complex and more difficult to replicate than this 

one, but using 2-D plates and measuring the 

displacement based on overlap regions is an 

extremely intuitive way to model plate collisions. 

Throughout the course of the year, Daniel has been 

doing research under the guidance of W. Randolph 

Franklin. Franklin’s research interests include the 



visualization of geological data. As a result, Daniel 

has done work with visualization of terrain surface 

data. The shader visualization in the fourth 

Advanced Computer Graphics homework 

assignment served as an inspiration for several 

features utilized in the visualization, particularly in 

the fragment shader. Additionally, a general concept 

for the steps involved in creating the terrain surface 

came from a presentation by Nowrouzezahrai 

[Nowrouzezahrai]. The paper on Geometry 

Clipmaps [Losasso et al. 2004] provided great 

insight on how to efficiently handle scale on large 

terrain surfaces. Lastly, the Sky Illumination Model 

[Kennelly et al. 2006] paper provided a realistic 

alternative to the standard fixed-position light 

source used in traditional terrain renders. 

3   Simulation 

 

Figure 2: Displacement applied on the base mesh, 

without applying shaders. Plates visualized in blue 

and red. 

The plate simulation is based on a modified version 

of the simple model proposed by Viitanen [2012]. 

The program first creates two plates “underneath” 

the mesh, represented as 2-D rectangles along the 

XZ plane (these can be specified using only two 

vertices, the top-left and bottom-right, as the rest 

can be inferred). These plates are given an initial 

velocity along the X axis so that they will 

eventually collide or diverge. 

When the plates do collide, they create a 

displacement on the mesh above them. This is 

achieved by creating an “overlap plate,” an object 

that acts similarly to a plate but actually represents 

the area of overlap between the two plates. At each 

timestep, the vertices in the mesh query the 

simulation for the magnitude of their displacement, 

and the simulation returns a value based on the size 

and position of this overlap region. 

3.1 Overlap Regions 

This overlap region is an essential part of the 

simulation. Luckily, creating an overlap region is 

extremely straightforward. Depending on how the 

plates are oriented, however, the calculation needs 

to be done slightly differently. If Plate 1 is to the 

left of Plate 2, the rightmost “vertices” (remember 

only one actually exists) of Plate 1 will be 

combined with the leftmost “vertices” of Plate 2. If 

they are reversed, then Plate 1 will use its leftmost 

ones, and Plate 2 its rightmost. 

To calculate displacement magnitude, the 

simulation creates a smooth gaussian function 

across the XY plane, using the velocities of the 

plates, the area of the overlap, and the midpoint of 

the overlap to create the curve of the function. More 

specifically, the function is defined as: 
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Where Y is the displacement in the Y direction, M is 

a modifier to modulate the size of the displacement, 

A is the area of the overlap region, V1 and V2 are 

the velocities of the plates, Px is the X position of 

the point being displaced, Cx is the X position of 

the center of the overlap region, and W is the width 

of the overlap region. 



 

Figure 3: Two plates move away from each other at 

high speed, creating a sharp gorge. 

3.2 Negative Overlaps 

In a plate tectonics simulation it is important not 

only to model plate collisions, but also plate 

divergence. To represent this separation of plates, 

the simulation uses “negative overlaps.” These are 

simply overlap regions that, rather than representing 

the area the two plates share, represents the area 

between them. This luckily requires very little 

modification of the collision-based overlap code, 

and in fact only requires the addition of a boolean 

called “empty” that represents whether the plate is 

empty (a negative overlap) or full (a positive 

overlap). When the overlap is empty, the gaussian 

function for displacement is flipped, thus creating 

negative displacement in the areas where the plates 

diverge. 

3.3 Running the Simulation 

At each timestep, the simulation moves the two 

plates based on their velocities and applies forces. 

Namely, a friction force is added to slow down plate 

movement and allow the simulation to converge. 

Whenever a plate moves (whether or not it is 

colliding with another plate), it receives a friction 

force proportional to its velocity and the area of 

overlap (even if it’s negative). This force makes the 

plates “grind to a halt” over the course of the 

simulation. 

Once the plates are moved and forces are added, the 

overlap region is recomputed and the update ends. 

From here the rendering side of the application 

makes queries about displacement values and feeds 

them into the shaders. 

 

Figure 4: A series of fault points in these plates 

create a jagged edge in the resulting mesh. 

 

3.4 Fault Points 

An extension to these basic techniques was also 

added, allowing for simple modeling of uneven 

plate boundaries. Instead of only looking at two 

plates flush against each other, this model selects 

specific points on the plate edge and shifts them 

along the X axis to create perturbations in the 

boundary. These points are called “fault points,” 

and the simulation using them is called the “Fault 

Points Method.” 

Fault points somewhat complicate the 

representation of plates and computation of overlap 

regions. Instead of only using two points for the 

plate rectangle (as mentioned previously), this 



method adds fault points along the plate edge in 

addition to the bounding box points. The fault 

points include one on the top and bottom of the 

plate (maximum and minimum Z values) as well as 

points in between. Since overlap regions are bound 

on both sides by fault points — unlike plates, which 

have three straight sides and one jagged side — 

they must be represented differently. With the Fault 

Points Method, each overlap region is specified by a 

series of fault points representing the midpoint of 

the overlap and a width value. The area of this 

region is actually equal to the area of an equivalent 

straight edge, since a parallelogram and a rectangle 

with the same width and height have the same area. 

Finding the displacement with the Fault Points 

Method involves getting a different midpoint for the 

overlap depending on the position of the point 

sending the query. The program finds the nearest 

fault point in the overlap (nearest in terms of Z 

only), then picks out the next closest point. The 

appropriate point along the overlap’s jagged central 

line can be determined by determining the 

intersection between two lines: the line between the 

two closest points and the line representing all 

points with the same Z value as the point  sending 

the query. With this intersected point (the 

equivalent point along the central line of the 

overlap), the gaussian function’s midpoint can be 

shifted along the X axis to create a curved 

displacement shape across the overall mesh. 

4 Visualization 

The second portion of the terrain simulator is 

graphical visualization. The purpose of this aspect 

of the project is to display the effects that the 

simulated tectonic activity would have on a 

supplied terrain surface. This visualization utilizes 

several graphical techniques in order to emphasize 

the displacement applied to the terrain by the 

simulation. These techniques include 

multitexturing, vertex-texture mapping, and semi-

procedural textures. 

 

4.1 Framework and Mesh 

The basic requirements for this visualization were 

the ability to render planar meshes, manipulate 

vertex locations for these meshes, and animate these 

vertex displacements. For this reason, the fourth 

homework assignment was used as the foundation 

for this project. Mesh loading and animation were 

already present within the foundation code. 

Additions were made to support vertex 

displacement, and several unused aspects, such as 

shadow volumes and the stencil buffer, were 

removed. Additionally, the vertex buffer objects 

(VBOs) for the primary mesh were modified to 

support the storing of texture values.  

The mesh is a simple flat plane, but care was taken 

in the construction of these meshes. This became 

more of a challenge than had been anticipated. After 

attempting to write an .obj generator and then trying 

various tools, it was determined that the Blender 

software package was capable of creating the 

required mesh. Blender was used to create a plane, 

which was then triangulated. The plane was then 

subdivided to create meshes of higher density. The 

primary target mesh is called  flat256.obj, while a 

smaller test mesh is called flat16.obj. Their 

attributes are as follows: 

flat16.obj Vertices:           

 Triangles:              

flat256.obj Vertices:                

 Triangles:                   

 

The system would support larger mesh sizes. The 

displacement computation, however, is not 

parallelized, and larger meshes would not be 

capable of producing real-time animations. 



 

Figure 5: Height map applied as both texture and 

vertex-texture displacement. 

4.2 Textures 

Textures are utilized extensively in the 

visualization. To be precise, five textures are loaded 

into the visualization: a height map, a normal map, 

a stone bitmap, a snow bitmap, and a grass bitmap. 

After finding a height map, the corresponding 

normal map was created using the CrazyBump 

software package. Attempts were originally made to 

generate the normal within the shader, but a proper 

normal calculation would have required access to 

adjacent vertices. The size of the height map and 

normal map are not necessarily governed or 

constrained by the size of the mesh. It did, however, 

seem logical to select these meshes such that each 

pixel corresponds to one square face (two triangle 

faces) of the mesh to create a one-to-one texture 

mapping. Large           images were used for 

the stone, snow, and grass textures in order to 

minimize pixelation artifacts. 

OpenGL by default does not provide the 

capability of loading textures. For this reason, 

several texture loading software packages were 

considered. Difficulties in including the package 

with cmake led to searching for simple source for 

loading a texture instead. The texture loader that 

was found works specifically on 24-bit BMP format 

images, and is inspired by the texture loader 

described by Guha [2010].  

The most time-consuming portion of the 

visualization was properly placing the textures into 

GLSL. As the process required several steps, it was 

default to determine the portion responsible for 

causing problems. The texture coordinates first 

needed to be specified in the creation of the VBO. 

After applying modulation and filtering settings, the 

texture was then bound in OpenGL. Each texture 

was then mapped to a corresponding sampler2d 

object in the shaders. The following code snippet 

shows the binding of the height map texture, stored 

in "texture[0]", to the sampler2d object 

"terrainMap" in the vertex shader. 

    // Height Map 
    glActiveTexture(GL_TEXTURE0); 
    GLint mapLoc = 

glGetUniformLocationARB(GLCanvas::program, 
"terrainMap"); 

    glBindTexture(GL_TEXTURE_2D, texture[0]); 
    glUniform1iARB(mapLoc, 0); 
 

4.3 Vertex Shader 

The vertex shader is responsible for vertex-texture 

mapping, which differs from some of the traditional 

forms of texture mapping. Unlike bump mapping, 

this causes an actual change to the geometry and 

produces realistic silhouettes. Unlike displacement 

mapping, this effect does not provide features such 

as self-occlusion and self-shadows. The per-vertex 

displacement is calculated based on the color 

attributes for the associated height map pixel. This 

displacement is then added directly to y-component 

of the vertex position. 

The newly added normals from the vertex-

texture mapping, loaded into the vertex shader as a 

normal map, needed to be combined with the 

normals of the actual vertex positions, which 

change during the course of the simulation. 

Additionally, the vertex normals utilize Gouraud 

shading, and as such, cannot be computed within 

the vertex shader. It was then quite difficult to 

compute the resulting normal from the combined 

vertex normal and normal map. As a workaround, 

the two normals are simply averaged, which 

produce satisfactory results. 



 

Figure 6: A height map, with corresponding normal 

map created using CrazyBump. 

 

4.4 Fragment Shader 

The fragment shader is responsible for selecting 

pixel color from a texture lookup, on a per-pixel 

basis. Simple shading is used, with a single 

stationary light source. The ambient component is 

kept to a minimal, and the majority of the lighting 

seen is diffuse. Basic specular lighting is 

implemented, but the effect was kept to a minimal. 

Multitexturing is the result of combining multiple 

textures on a single surface. In this case, the stone, 

snow, and grass textures are each sampled. The 

worldspace y-position is then utilized in order to 

determine which texture of the three to utilize, with 

snow selected for high height values, stone selected 

for middle height values, and grass selected for low 

height values. These height values are dynamic, and 

as such, the texture is calculated procedurally and 

updates with the simulation.  

Perlin noise is utilized in order to create a blended 

transition area at the height boundaries between two 

textures. As seen in Figure 7, the gradual transition 

is more natural and less startling than the hard 

boundary line. Perlin noise is additionally used to 

adjust the normal for variations in the specular 

lighting. 

 

Figure 7: View of the snow-stone height boundary. 

Left without Perlin noise, right with Perlin noise 

 

4.5 Views 

The visualization offers several viewing options. 

Upon startup of the animation, the rendered scene 

shows the height map applied as a texture to the flat 

plane. Additionally, it shows the locations of the 

tectonic plates situated under the terrain surface, 

which can be toggled on or off. The shaders can 

then be enabled, which will displace the terrain and 

apply the procedural multitexture. The animation 

can be run while in either of these views. 

5 Results 

The program was tested on a Intel Core 2 Duo CPU 

at 2.66 GHz and an NVIDIA GeForce 9600M GT 

256 MB GPU, which has 32 cores at 120 MHz. On 

the 16x16 mesh the program ran in real-time, but on 

the 256x256 mesh the program slowed to 

approximately 3 frames per second. 

Included in this paper are a number of images from 

the program, showing a variety of configurations of 

plates, velocities, fault points, and shader inputs to 

show the range of plate dynamics and terrain 

renderings the program can create. 

The Gaussian function in the simulation tends to 

create a smooth curve that changes fairly 

significantly depending on the position and size of 

the overlap region, as seen in Figure 1, and the 

addition of Perlin noise adds some crucial variation 

to the displacement values. 



Fault points create sharp, interesting discontinuities, 

as seen in Figure 4, but the variation is more than 

expected, and could probably use some tweaking to 

create smoother displacement values. 

The visualization, when loaded and rendered prior 

to the simulation, will produce a result such as that 

found in Figure 8. As the simulation runs, the 

procedural texture will dynamically update to select 

which texture to display for each pixel on the terrain 

surface. A close-up view of the terrain can be seen 

in Figure 9. 

 

Figure 8: Complex terrain before plate movement. 

 

 

Figure 9: Close-up of complex terrain after plate 

movement and vertex displacement. 

 

6 Limitations and Future Work 

Tectonic activity is capable of producing a large 

variety of effects, and can occur under conditions 

which are not represented in this simulation. The 

simulation is limited to focusing on an edge 

between two plates, and therefore, cannot model 

tectonic effects occurring at interfaces containing 

more than two plates. Additionally, the model 

presented is not capable of simulating short-term, 

large tectonic events such as earthquakes. An 

avenue of future work would be to generate a 

timeline of geological events, and to display the 

occurrence of the events as the simulation runs. 

This would include both large and small effects 

caused by tectonic activity. 

The simulation utilizes a 2-D model for the 

interactions between tectonic plates. Realistic 

geological changes that take place as a result of 

tectonic activity are too complicated to model using 

a simple 2-D structure. An alternate approach would 

be to simulate the rock in the Earth’s crust as an 

extremely viscous fluid. The tectonic effects would 

then be modeled by forces being applied to this 

fluid. 

While shaders are utilized for this project, the 

simulation runs on a single thread on the CPU. The 

simulation is CPU bound, and is number of vertices 

in the terrain mesh ultimately serves as the limiting 

factor in the size of the simulation. As computations 

occur independently for each vertex displacement, 

the simulation is embarrassingly parallel. Use of 

multiple CPU threads or the GPU would allow for 

larger and denser meshes to be utilized. 

As the vertices are displaced both in OpenGL and in 

GLSL, normal maps and a workaround were 

utilized in place of computing the proper normals 

for each vertex. This ultimately limited the 

capability for interesting lighting effects, as such 

effects would place emphasis on the flaws in the 

normals. 

An avenue for future visualization work would be to 

place a water level line. Any terrain that falls below 



the water level line would be filled with water. A 

realistic water simulation would be ideal, but a 

simple approach would be to create textured solid 

geometry to fill the space. Adding realistic water 

effects to the geological timeline could produce 

interesting effects caused by large tectonic events, 

including the creation of waterfalls. 

 

Figure 10: Proper scaling was a major concern. 

Here noise values have not been correctly scaled, 

resulting in widely divergent vertex displacements. 

 

7  Conclusions 

This project was successful in the creation of a 

physically plausible simulation of the long-term 

effects of tectonic activity. Geological effects are 

modeled using simple geography and physics. The 

graphical rendering aspect provides a visualization 

of the geological changes that occur over time as a 

result of the plate movement.  

 

 

8 Contribution Summary 

Daniel Benedetti’s primary contribution was the 

visualization code, including meshes, textures, and 

shaders. Additional time was spent aiding in the 

debugging of the simulation code, for a total of 

approximately 60 hours of work on the project. 

Evan Minto created the plate simulation code, and 

helped debug some of the shader code, for a total of 

approximately 40 hours of work on the project. 
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