
Rapid Cloth Collision Detection using Bounding Sphere Trees

Fangyuan Ding∗

Advanced Computer Graphics
Spring 2013

Figure 1: A bounding sphere tree applied to a flat surface and draped cloth, respectively

Abstract

The accurate detection of object-to-object collisions has numer-
ous practical applications in the fields of computer simulation and
graphics. However, naive collision detection and handling is a very
costly process that increases exponentially with the size and com-
plexity of the scene geometry, making it impractical for moderate
to large-scale simulations.

This paper presents a method for efficiently handling collision de-
tection in semi-rigid mass-spring particle systems such as cloth. In
particular, this paper will outline the usage and implementation of
a bounding sphere tree as a spatial accelerator, as well as other op-
timizations that can exploit this hierarchical structure.

Keywords: bounding sphere tree, cloth simulation, collision de-
tection

Links: DL PDF

1 Introduction

The mechanics of collisions among rigid bodies is well-defined by
the laws of classical mechanics. By interpolating the position of

∗e-mail:dingf@rpi.edu

a rigid object along its velocity, we can derive its position at any
point in time. In a similar manner, we can also derive the velocity
and acceleration. However, this is not necessarily the case for semi-
rigid and deformable surfaces, such as cloth, which are subject to
internal forces as well as external ones.

Additionally, while the mechanics of such collisions may be well-
defined, the process of detecting such a collision is less so. Given
that modern meshes are usually composed of at many thousands
of polygons, a per-polygon comparison for each object would be
impractically slow. To aid in this endeavor, rigid bodies often em-
ploy bounding volumes, which are simple, geometric shapes that
enclose the object. Because the intersections of bounding volumes
are much easier to calculate, collisions between rigid objects can be
computed in a reasonable time, at the expense of some accuracy.

An interesting physical-based approach for simulating cloth was
presented by [Provot 1995], which treated the cloth as a grid of
particles, each connected to its neighbors by springs. Under this
model, each particle is treated a rigid body, which allows for the
use of classical mechanics to approximate the cloths movement.
A later paper by [Provot 1999] also details how to apply a simple
collision detection algorithm to this system.

The goal of this paper is to expand upon the foundations presented
in these papers, as well as those found in traditional rigid body col-
lision algorithms, in order to build a fast and efficient model for
collision detection within a mass-spring cloth system.

2 Collision Detection

The general case of collision detection involves the superposition
of one object, be it a mesh, edge, or polygonal face, over another
object at some time t. Let t0 be a previous time at which these two
objects were not in contact with each other. We can then define an
interval [t0, t0 +∆t], where ∆t is the difference in time between t
and t0, over which the collision occurred. Because we know both

http://doi.acm.org/10.1145/1111111.2222222
http://portal.acm.org/ft_gateway.cfm?id=2222222&type=pdf

the positions and velocities of each particle at time t0, we can cal-
culate their respective positions at time t.

The relatively simple nature of the mass-spring system means that
there are only two types of collisions that need to be checked for:
point-to-triangle collisions and edge-to-edge collisions. Note that
these collisions must be checked reciprocally in order to be accu-
rate; given two triangles, checks must be made both from the ver-
tices of the first triangle to the second and from the vertices of the
second triangle to the first.

2.1 Point-to-Triangle Collisions

Consider the case of a point and triangle in our simulation. In gen-
eral, neither the point nor the triangle will remain stationary due
to the various forces that are being applied to them. Therefore, let
P (t) denote the position of the point at time t, andA(t),B(t),C(t)
denote the positions of the vertices of the triangle ABC at time t,
respectively. We can define P (t), A(t), B(t), and C(t) as follows:

P (t) = P0 + tVP

A(t) = A0 + tVA

B(t) = B0 + tVB

C(t) = C0 + tVC

where P0, A0, B0, and C0 denote the positions of the correspond-
ing points at time t0, and VP , VA, VB , and VC denote the velocities
of these points at time t0, respectively.

When P (t) intersects with the triangle ABC, we note that P (t) is
coplanar with ABC. Let us define the vectors

−→
AP (t),

−→
AB(t), and

−→
AC(t) as follows:

−→
AP (t) = P (t)−A(t) = P0 + tVP −A0 + tVA

−→
AB(t) = B(t)−A(t) = B0 + tVB −A0 + tVA

−→
AC(t) = C(t)−A(t) = C0 + tVC −A0 + tVA

WhenP (t) is coplanar to theABC,
−→
AP (t) will be perpendicular to

the normal of the plane. Therefore, we can define this coplanarity
in terms of the scalar triple product of the three vectors,

−→
AP (t),

−→
AB(t), and

−→
AC(t):

−→
AP (t) · (

−→
AB(t)×

−→
AC(t)) = 0 (1)

From our definitions above, we can see that this equation is a cubic
polynomial of t. Solving for (1) produces up to three values of
t, which correspond to the different times at which the point and
triangle are coplanar. However, we are only interested in the value
tc that corresponds to our original interval, [t0, t0 + ∆t]. If no such
tc exists, then we can safely conclude that there is no collision. If
multiple valid tc values exist, we take the smallest value instead.

Recall that the solutions to this polynomial only define the times at
which the point is coplanar with the triangle. In order to determine
whether the point is actually intersecting with the triangle, we first
extrapolate both the point and the triangle to their respective loca-
tions at time tc. Then, the position of the point P (tc) is converted
from the Cartesian coordinates (xp, yp, zp) to the barycentric coor-
dinates (αp, βp, γp) with respect to ABC. If αp, βp, and γp are
all within the interval [0, 1], then we confirm that the point is in the
triangle. Otherwise, we reject tc as a valid collision time.

2.2 Edge-to-Edge Collisions

Let us consider the general case of two edges moving simultane-
ously. We will defineAB(t) to be the edge defined by (A(t),B(t))
and CD(t) to be the edge defined by (C(t), D(t)). When AB(t)
and CD(t) intersect, we observe that the points A(t), B(t), C(t),
and D(t) must be coplanar. Therefore, to derive the time of colli-
sion, we will use the following equation, which is similar in nature
to (1):

−→
AC(t) · (

−→
AB(t)×

−−→
CD(t)) = 0 (2)

where
−→
AC(t) is the vector from A(t) to C(t),

−→
AB(t) is the vector

from A(t) to B(t), and
−−→
CD(t) is the vector from C(t) to D(t).

Once again, solving the cubic equation (2) for tc is not sufficient in
determining whether a collision actually occurred between AB(t)
and CD(t). To determine whether the edges are intersecting, we
find the line (PAB , PCD) such that the distance between AB(tc)
and CD(tc) is minimized. If the distance between PAB and PCD

is approximately zero, then the two lines that contain AB(tc) and
CD(tc) collide at time tc. However, this is already known from
the previous step. Instead, we check whether or not PAB and PCD

are contained within their respective edges; if the distance from the
midpoint ofAB(tc) and CD(tc) to PAB and PCD , respectively, is
less than or equal to half of the length of the corresponding edge,
then we find that there is a collision between AB(t) and CD(t) at
time tc.

3 Bounding Sphere Tree

Specifically, a bounding sphere S is a sphere with center cs and
radius rs such that the object that it is bounding is completely con-
tained within its bounds. That is, every point in the bounded object
must be within rs distance from cs. This makes the detection of
any collision within a bounding sphere trivially easy. Given a set
of points however, finding the exact minimum bounding sphere that
encompasses those points is computationally difficult. Instead, we
use a fast approximation algorithm, along with known properties
of our cloth, in order to approximate a very tight fitting minimum
bounding sphere.

Recall that in a mass-spring system, cloth particles are always
aligned in a rectangular w×h grid. Therefore, under normal defor-
mation constraints, we may assume that the center of this grid, (w

2
,

h
2

) is reasonably close to the center of the exact minimum bounding
sphere. From this point, we construct an axis-aligned bounding box
that contains every cloth particle. We may then trivially construct
an initial bounding sphere with center cs equal to the center of the
bounding box and radius rs equal to half the length of the box’s
diagonal.

Once we have our initial bounding sphere, we recursively subdivide
the parent bounding sphere into four children bounding spheres,
based on the positions in 2D texture space of its corresponding
bounded grid. If a parent sphere bounds a grid with dimensions
w×h, then its children will bound a grid of dimensions w

2
× h

2
with

centers at (w
4

, h
4

), (3w
4

, h
4

), (w
4

, 3h
4

), and (3w
4

, 3h
4

), respectively.
If, due to excessive deformation, the radius of the child bounding
sphere is not large enough to bound its allocated particles, then we
extend its radius using the axis-aligned bounding sphere method
described above. Note that, unlike many other space partitioning
structures, this subdivision scheme does not completely partition
the parent’s volume among its children. It is however, guaranteed
to fully bound the cloth at any depth of the tree.

Figure 2: Top and side view of the bounding sphere tree after two
iterations. As depth increases, the volume quickly converges to that
of the bounded surface.

Once a certain depth is reached, the subdivision algorithm halts.
This depth varies based on the size of the bounded cloth; bounding
spheres will continue to subdivide until the number of particles that
they bound, and consequently, their area, is less than a threshold
value. These terminal bounding spheres are then marked as leaf
nodes in the tree, which store pointers to their bounded cloth par-
ticles and surrounding neighbors, but do not have any children of
their own.

When performing a collision test, we can then quickly eliminate
large portions of non-intersecting particles by only traversing those
nodes through which the bounding sphere intersects the object’s
volume. Intersecting leaf nodes are then collected and individu-
ally checked for collisions. Note that, in order to be accurate, we
must consider the object over the interval [t0, t0 + ∆t]. For a point
P (t), this becomes a line segment of the form (P (t0), P (t0+∆t)).
For an edge AB(t), this will be a quadrilateral of the form (A(t0),
B(t0), B(t0 + ∆t), A(t0 + ∆t)) instead.

Because of the dynamic nature of deformable systems such as cloth,
a previously generated bounding sphere tree is not guaranteed to
remain accurate for future calculations. Therefore, at each iteration
of the simulation, the bounding sphere tree must be generated again
in order to be valid. This adds some undesirable, albeit necessary,
overhead to the simulation’s running times.

4 Normal Masks

For the purposes of this section, let us only consider the case of
self-collisions. In such a scenario, we note that a collision can only
occur over a given area if the curvature of that area is sufficiently
large. That is to say, a relatively flat piece of cloth will not have any
self-collisions whatsoever. More formally, we can describe this as
follows: if there exists a vector V such that, for each normal vector
N in the area, N · V > 0, then no self-collision can occur within
that area.

Our method builds upon the work of [Volino and Thalmann 1998],
who used a hierarchical bounding box structure for spatial acceler-
ation. First, we construct a reference table of 26 vectors, one from
the center of a unit cube to each of its corners, edges, and face cen-
troids. Then, for each leaf node, we calculate which of these 26
vectors have a positive dot product with each of the normal vectors
within the area bounded by the bounding sphere. Because we are
only interested in whether a vector has a positive dot product with
the normals of a given area, we can record the results for each of
the 26 vectors within a single 32-bit bitmask. Normal masks must
also be generated for time t0 + ∆t, in addition to time t0, in order
to ensure correctness.

Once the normal masks for the leaf nodes have been constructed,
the normal masks for previous depths may also be trivially con-
structed: for any non-leaf node, any vector V that has a positive dot
product with every face in its bounded area will also be common to
each of its children nodes. Therefore, its normal mask is simply the
intersection of the normal masks of its children. Note that, because
we only use the 26 previously described vectors for comparison,
there may exist a vector V for a node, even if its normal mask is
completely empty. In practice however, this does not occur very
often.

When performing self-collision checking over two nodes that
bound areas of the same cloth, we first test their normal masks;
if the intersection of their normal masks at both time t0 and time
t0 + ∆t is not zero, and the intersection of these intersections is
also non-zero, then there exists a vector V that is common to both
areas. In that case, we may safely assume that self-collisions will
not occur between the two areas, and no further collision testing is
performed.

5 Results and Discussion

Our algorithm produces correct bounding spheres trees that fully
bound the surface of the cloth at any time t. Because the surface
of the cloth is constantly changing however, new bounding sphere
trees must be generated at each iteration of the simulation. As men-
tioned earlier, this adds some overhead to the simulation, usually
on the order of 20-40% of the original running time. Nevertheless,
we find that our algorithm is still practical for producing real-time
cloth simulations.

As the bounded cloth becomes increasingly deformed however, the
performance of the bounding sphere tree begins to decrease. This
is largely due to two factors: first, the normal masks between nodes
are far less likely to rule out self-collisions. And second, the num-
ber of bounding spheres intersecting a given object is likely to in-
crease in a very tightly deformed area. In the worst case, if every
particle were close enough such that all of the leaf bounding spheres
intersected each other, the bounding sphere tree would provide al-
most no benefit at all. However, the same could be said for any
other bounding volume hierarchy as well.

One more thing to note is that volume is not conserved between
depths in a bounding sphere tree. In fact, the combined volume
bounded by four children spheres is usually much smaller than the
volume of their parent bounding sphere itself. Indeed, as depth in-
creases, the combined bounding volume of all nodes at that depth
converges to that of the surface itself, making it ideal for bound-
ing flat, deformable surfaces such as cloth. As the cloth becomes
deformed, the bounding volume of a parent node is also not guar-
anteed to fully bound the bounding volume of any of its children.
However, any volume in a child sphere that lies outside of the vol-
ume of its parent is largely irrelevant, for it will neither contain
cloth particles nor be reachable by collision testing.

Cloth Grid Size Frame Rate* Frame Rate†
singularity.txt 15x15 45.33 37.17

drape.txt 20x20 27.91 19.62
bigsingularity.txt 100x100 1.26 0.95

*without bounding sphere tree calculations
†with bounding sphere tree calculations

Table 1: Rendering times for our cloth simulation, both with and
without bounding sphere tree calculations, for various cloth sam-
ples. Note that actual collision detection was not performed in any
of these test cases.

6 Limitations

Because our underlying cloth model is based off of the one pre-
sented by [Provot 1995], we use explicit Euler integration to deter-
mine the position, velocity, and acceleration of every particle for
each iteration of the simulation. This is also required for our colli-
sion detection, which uses Euler integration to extrapolate the posi-
tion of a point, triangle, or edge at a future time. However, the ac-
curacy of Euler integration is also proportional to the step size used,
and therefore becomes unstable when a sufficiently large timestep
is used. This severely limits the range of cloth that this model is
capable of simulating.

Additionally, recall that our algorithm relies on an axis-aligned
bounding box to generate bounding spheres. While this is a fast
approximation method that produces passable results for most sit-
uations, it also fails to produce the absolute minimum bounding
sphere for a given set of points. An alternative method presented
by [Welzl 1991] introduces a method for producing the absolute
minimum bounding sphere in linear time. However, due to time
constraints, we chose not to implement this algorithm in our solu-
tion.

Finally, and perhaps most important of all, our collision detection
algorithm is not currently functional. While we are able to construct
the bounding sphere tree and calculate the correct solutions to the
cubic equations (1) and (2), actual collision detection remains dis-
abled for the time being. A naive collision detection method was
attempted; however, this method proved impractically slow, even
with normal mask and boundary sphere culling. Additionally, while
this algorithm above did produce the correct results eventually, it
failed to perform any collision handling afterwards, producing no
visible results in the underlying cloth.

References

PROVOT, X. 1995. Deformation constraints in a mass-spring
model. Graphics Interface.

PROVOT, X. 1999. Collision and self-collision handling in cloth
model dedicated to design garments. Graphics Interface.

VOLINO, P., AND THALMANN, N. M. 1998. Collision and self-
collision detection: Efficient and robust solution for highly de-
formable surfaces.

WELZL, E. 1991. Smallest enclosing disks (balls and elipsoids).
New Results and New Trends in Computer Science.

