
1

Massively Parallel Marker and Cell with
Division Visualization

Tianning Han and Nicholas Westrich
May 2, 2013

Abstract
The goal of this paper is to propose a massively parallel

solution for the Navier-Stokes fluid equations utilizing the
Marker and Cell simulation technique proposed by Foster and
Metaxas. We also aim to show several new visualizations
that we have added to the fluid renderer.

1. Introduction
Fluid simulation is a complex computational task. One of

the earliest simulation techniques involves the creation of a
uniform grid of fluid volumes, known as cells. These cells are
then used to compute small segments of fluid velocities.

Once the velocities in these cells are calculated,
divergence calculations are performed to ensure that the
inflow and outflow of each cell is consistent. This helps to
prevent compressibility, causing changes in the volume of
simulated fluid.

Because the cell velocities only simulate the underlying
fluid currents and behavior, the output visualization does not
create a human-interpretable fluid. Because of this, “marker”
particles are added to aid in the fluid visualization.

These marker particles follow the cell velocities, and are
updated on an interval known as a timestep. Area-based
velocity interpolation is performed on a per-marker basis,
giving us human-interpretable fluid simulation.

After the markers are correctly interpolated, marching
cube/tetrahedron computations can be performed on the
marker particles to form a polygonal surface. While we do not
cover it in this paper, from this polygonal surface, a good fluid
representation can be created, and refraction approximations
can be computed and displayed.

2. Related Work
A massively parallel marker and cell solver was described

by Averbuch et al in their paper Highly Scalable Two- and
Three-Dimensional Navier-Stokes Parallel Solvers on MIMD
Multiprocessors. This implementation of a parallel Navier-

Stokes solver details a cell splitting algorithm that divides
along a single axis, giving “slabs” that are distributed among
processors.

It also details a method for Poisson pressure
equalization, utilizing global communication between
processors to retrieve necessary cell data. In addition to
Poisson types, they also solve for Helmholtz types to form a
time discretization procedure resulting in monotonic
problems.

Finally, they detail a method for Local Fourier Basis
technique for the overlapping of neighboring subdomains.
Local solutions in their paper are then matched using
weighted interface Green’s functions.

The Foster and Metaxas Paper, Realistic Animation of
Liquids, describes a serial implantation of the original Marker
and Cell implementation. In their paper, they provide
algorithms for velocity calculations, divergence equalizations,
and velocity interpolation.

In addition, their paper also describes the use of marker
cells to properly illustrate the motion of a simulated fluid.

3. Parallel Marker and Cell

3.1. Cell Division
We demonstrate two cell division algorithms. The first

cell division operation works on scenes that have more
processors than the number of cells in the z direction.

Figure 1: Cubic Division Method Pseudocode

//dimensions: [0]=x, [1]=y, [2]=z

for num in divisions:

 while true:

 if (dimension[] % 3 != 1):

 dimension[num % 3] /= 2;

 num++; break;

2

Figure 2: Cubic Cell Division with 8 Nodes

The next division paradigm cuts only the along the z axis,
which improves the surface area to volume ratio of the scene,
but cannot operate unless the scene has more cells in the x
direction than number of processors operating on the
problem.

Figure 3: Z-Cut Division Method

Figure 4: Z-Cut Cell Division with 16 Nodes

3.2. Boundary Cell Computation
After computation of the cell affinities, each node

creates a list of its boundary cells so that it can synchronize
intersecting boundary data during each timestep. To do this,
each node simply builds a list of every cell that is either one
less than, or one greater than each of its dimensions.

After this list has been built, it is sorted, and duplicates
are removed. Because the boundary cell list is computed only
once during startup, the performance impact is negligible.
However, utilizing these boundary cells allows us to achieve
direct neighbor-to-neighbor communications instead of
gather-scatter operations, drastically improving the
performance of the simulation.

Figure 5: Boundary Cell Computation

3.3. Boundary Synchronization
Boundary synchronization occurs any time computations

are performed that require data from the previously
computed boundary cells. In our method, each node
retrieves the boundary data using neighbor-to-neighbor
communications utilizing one way data transfer.

Figure 5: Boundary Cell Computation shows a two
dimensional example of the boundary cells that each node
needs to receive to perform its necessary computations.
Because nodes communicate directly, this synchronization
has a low performance impact when compared to a
master/slave gather and scatter type synchronization

3.4. Marker Division/Generation
Marker division also occurs on a per node basis. Each

node is responsible for only its subset of the total particle
array, which means that each node also must generate (total

//[0] = x dimension

dimension[0] =

 x_cells / number_of_nodes;

3

number of cells / number of nodes) particles within its own
boundaries.

Because particle generate can be uniform or random, the
generation algorithm simply generates the appropriate
number of particles only within the node’s cell boundaries.
Additionally, particles that are generated within any obstacle
in the scene are discarded.

Figure 6: Parallel Particle Generation

3.5. Process Splitting
Because the Blue Gene/Q that we are working with does

not have any OpenGL capable display, we found it necessary
to completely separate the simulation and rendering code.

To accommodate this design decision, the simulation
program outputs particle and cell data directly to stdout,
which we either pipe directly into the renderer and/or a file.

The rendering is then capable of reading data from a file
or data stream, and reconstructing the frame that the
simulation has recorded. Additionally, the rendering
implementation also computes marching cubes locally to
form the final surface mesh.

Evidently, because the rendering and simulation are
separated, the first frame of data in the rendering is
incomplete. This explains why Figure 6: Parallel Particle
Generation has already undergone an iteration of velocity
computations and particle movement.

Figure 7: Process Splitting Diagram

3.6. Cell Velocity Computations
Because cell velocity computation requires the boundary

cells, each node must first synchronize the previous iterations
results in the boundary interfaces. However, once the
boundaries are synchronized, the Navier-Stokes equations
are solved locally within the node boundaries as described by
Foster and Metaxas.

During the next portion of computations, we compute
divergence and equalize inflow and outflow among cells to
preserve fluid volume. This is accomplished by performing
local divergence calculations and averaging data across node
neighboring node boundaries.

Figure 8: Parallel Velocity Computation

3.7. Marker Position Interpolation
Much like cell velocity computations, once the boundary

cells are synchronized, each node computes its share of
interpolated marker particle velocities and updates their
position on a node-by-node basis.

However, if the particle leaves the boundaries of any
node, the particles’ node affinity must be updated. Because
particles are stored locally on each node, we must use a
bidirectional data transfer to properly update its node
affinity.

4

Figure 9: Particle Reassignment Pseudocode

3.8. External Force Field Computation
To accommodate more complex scenes, like a scene with

a large wave, we had to add external force field capabilities.
The addition of these capabilities allows us to apply external
forces to add energy to a scene. This also means that we can
control the directionality of the energy, and thus, generate
interesting phenomena like waves.

Figure 10: Wave Generation Pseudocode

Figure 11: Force Field Velocities

Figure 12: Force Field Particles

3.9. Obstacle Inclusion
Another feature that we’ve included in our algorithm is

obstacle handling. As described in the Foster and Metaxas
paper, we have implemented obstacles as a simple extension
of the boundary cell calculations. From this, we were able to
add several additional scenes. Creating a parallel version of
the obstacle code was relatively straightforward, since it only
required local cell velocity zeroing.

Figure 13: Obstacle Pseudocode

Figure 14: Starting and Ending states - Obstacle Scene

3.10 Rendering Features
In addition to our parallelized simulation, we also

included several key additional rendering features. The
rendering program for the recorded simulation data includes
time-accurate rendering options, as well as restarting,
rewinding, and variable speed capabilities. Ultimately, these
features helped us to debug our simulation implementation,
as well as prepare interesting live demonstrations.

//send particles

for p in particles:

 if p is outside node bounds:

 dest = computeDestNode(x,y,z);

 sendParticleToDest(p, dest);

 particles.remove(p);

//receiving particles

while (receiving):

 particles.add(p);

If (wave_generate == true):

 for n in wave_duration:

 for cell in wave_cells:

 add_wave_velocity(cell);

//obstacle list built by parser

For o_cell in obstacle_list:

 setVelocitiesToZero(o_cell);

5

Figure 15: Large City Shadow Volumes

4. Scaling
We were able to run our fluid simulation code on the

Blue Gene/Q using several different configurations. We ran
three cubic scenes. Each of the scenes has a spiral velocity at
the center of the front face. Each of these test scenes was
run until the maximum velocity of any cell was less than 10
percent of the scenes’ largest starting velocity.

From this threshold value, we were able to record
computation, synchronization, and total run times on a
variety of node counts, ranging from 4 to 1024.

In the first run of the tests, we enabled the data output
on the Blue Gene/Q. However, because we were unable to
utilize MPI file IO, we had to gather all of the data onto rank
zero to be output to the data file, leading to massive
increases in synchronization times.

Because of the increased synchronization times, we
notice that on smaller test sizes, the optimal configuration
actually falls in between 32 and 128 nodes. As the problem
size increases, we see that the scaling continues as the
number of nodes increases.

Figure 16: 16x16x16 Times - File I/O Enabled

Figure 17: 32x32x32 Times - File I/O Enabled

Figure 18: 64x64x64 Times - File I/O Enabled

However, in the next series of tests, we decided to
disable our global gather-based file I/O to simulate the scaling
of the program as if MPI file I/O were properly implemented.
As the following graphs show, the scaling improves
drastically.

Without the bottleneck of the faulty file I/O, we see that
the scaling continues improving as we allocate more nodes to
the problem. Because of this, we decided not to implement
any type of dynamic node-cell allocation sizing. The scaling is
a direct result of the neighbor-to-neighbor communications
paradigm that we utilized. If a master/slave configuration
were used, the synchronization times would increase just as
they did with the gathering file I/O tests seen in Figure 14:
16x16x16 Times – File I/O Enabled, Figure 15:32x32x32 times
– File I/O Enabled, and Figure 16: 64x64x64 Times – File I/O
Enabled.

In the following series of graphs, we also included both
single and two core run times to fully compare the
performance and scalability of our implementation. In the

6

best case scenario, we observed a performance increase of
80x when scaling from 1 to 1024 cores.

Figure 19: 16x16x16 Times - File I/O Disabled

Figure 20: 32x32x32 Times - File I/O Disabled

Figure 21: 64x64x64 Times - File I/O Disabled

5. Limitations
Unfortunately, our method does have some limitations.

The surface code for our method does not function properly,
and produces unrealistic, albeit interesting results.

Additionally, as mentioned in the Scaling section of this
paper, we were unable to implement a proper MPI file I/O
system, so getting renderable data has a significant impact on
the overall performance of the simulation.

One of the largest limitations that we had to contest with
was the endianness of our local system versus the endianness
on the Blue Gene/Q. Because we output rendered data as
binary code, the endian mismatch caused the rendering
program to be unable to display the recorded data.

To remedy this, we implemented on-the-fly byte order
switching, and ensured that all of our data types were byte
aligned on eight byte boundaries. Unfortunately, this caused
the simulation to run roughly 100x slower on the Blue
Gene/Q.

6. Additional Tools
To facilitate our final water simulation scene, we created

a procedural city generator. This city generator creates a
multilevel island with a specified number of buildings. The
island has specified radii for each of the levels and creates the
buildings at random locations with widths of either two or
three.

It is also an important property for the fluid simulation
that the number of obstacles is minimized, so the city
generation script guarantees to have no duplicate obstacle
cells, lessening the computational load on the simulation run.

Figure 22: Small City Generation Example

7

7. Results and Discussion
We were able to create a large-scale marker and cell

implementation with interesting visualizations. Of particular
interest were the cell affinity visualizations, marker affinity
visualizations, and obstacles. We also added shadow
volumes and surface opacity to truly showcase the
simulation’s capabilities.

Figure 23: Large Shadowed City with Affinity Coloring

Figure 24: In-Progress City Fluid Simulation

Figure 25: Tron.png

Figure 26: Tron2.png

For this project, we ended up utilizing pair programming
for large portions, since much of our time was spent fixing
bugs and algorithmic errors in our code. We learned much
about properly using MPI and its API. Additionally, we
learned that it is difficult to debug parallel programs.

Because there were many portions of the Marker and
Cell code that had to be parallelized, it was difficult to track
down issues in any single function. When more than one bug
contributed to a simulation error, it was very difficult to track
them down. Additionally, we learned that the
synchronizations that are required in a problem of this nature
can be difficult to optimize unless properly formulated.

In total, we estimate that we spent about 400 hours on
this project between the two of us. Cumulatively, there were
also nearly 400 commits to our git repo over the course of the
project.

8. Future Work
We would like to complete the massively parallel

implementation by including proper MPI file I/O. This would
allow us to render extremely large jobs on the Blue Gene/Q
and retrieve data when available.

Additionally, we would like to expand the simulation to
include a non-uniform grid. By implementing some form of
voxel-based simulation, we would be able to improve the
simulations of smooth surfaces, buildings, and other
interesting geometries that our current incarnation cannot
reasonably handle.

Finally, we would like to implement dynamic load
balancing so that particle computations can be better spread
among the nodes. By doing this, we can ensure that we
achieve the fastest possible run times when computing very
large scenes.

9. References
[1] Averbuch, Ioffe, ISraeli, and Vozovoi, “Highly Scalable

Two- and Three-Dimensional Navier-Stokes Parallel
Solvers on MIMD Multiprocessors”, In Journal of
Supercomputing, Vol. 11, 1997

8

[2] Foster and Metaxas, "Realistic Animation of Liquids", In
Graphical Models and Image Processing, 1996

[3] Keenan Crane, Ignacio Llamas, Sarah Tariq, “Real-Time

Simulation and Rendering of 3DFluids.” In GPU Gems 3,
2009.

[4] Todisco, “Real-Time Fluids with Advanced Shaders”,

2012

