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Abstract 
The goal of this paper is to propose a massively parallel 

solution for the Navier-Stokes fluid equations utilizing the 
Marker and Cell simulation technique proposed by Foster and 
Metaxas.  We also aim to show several new visualizations 
that we have added to the fluid renderer. 

1. Introduction 
Fluid simulation is a complex computational task.  One of 

the earliest simulation techniques involves the creation of a 
uniform grid of fluid volumes, known as cells.  These cells are 
then used to compute small segments of fluid velocities. 

Once the velocities in these cells are calculated, 
divergence calculations are performed to ensure that the 
inflow and outflow of each cell is consistent.  This helps to 
prevent compressibility, causing changes in the volume of 
simulated fluid.   

Because the cell velocities only simulate the underlying 
fluid currents and behavior, the output visualization does not 
create a human-interpretable fluid.  Because of this, “marker” 
particles are added to aid in the fluid visualization. 

These marker particles follow the cell velocities, and are 
updated on an interval known as a timestep.  Area-based 
velocity interpolation is performed on a per-marker basis, 
giving us human-interpretable fluid simulation.   

After the markers are correctly interpolated, marching 
cube/tetrahedron computations can be performed on the 
marker particles to form a polygonal surface. While we do not 
cover it in this paper, from this polygonal surface, a good fluid 
representation can be created, and refraction approximations 
can be computed and displayed.  

2. Related Work 
A massively parallel marker and cell solver was described 

by Averbuch et al in their paper Highly Scalable Two- and 
Three-Dimensional Navier-Stokes Parallel Solvers on MIMD 
Multiprocessors.  This implementation of a parallel Navier-

Stokes solver details a cell splitting algorithm that divides 
along a single axis, giving “slabs” that are distributed among 
processors. 

It also details a method for Poisson pressure 
equalization, utilizing global communication between 
processors to retrieve necessary cell data.  In addition to 
Poisson types, they also solve for Helmholtz types to form a 
time discretization procedure resulting in monotonic 
problems. 

Finally, they detail a method for Local Fourier Basis 
technique for the overlapping of neighboring subdomains.  
Local solutions in their paper are then matched using 
weighted interface Green’s functions. 

The Foster and Metaxas Paper, Realistic Animation of 
Liquids, describes a serial implantation of the original Marker 
and Cell implementation.  In their paper, they provide 
algorithms for velocity calculations, divergence equalizations, 
and velocity interpolation. 

In addition, their paper also describes the use of marker 
cells to properly illustrate the motion of a simulated fluid. 

3. Parallel Marker and Cell 

3.1. Cell Division  
We demonstrate two cell division algorithms.  The first 

cell division operation works on scenes that have more 
processors than the number of cells in the z direction.  

 
Figure 1: Cubic Division Method Pseudocode 

//dimensions: [0]=x, [1]=y, [2]=z 

for num in divisions: 

  while true: 

    if (dimension[] % 3 != 1): 

      dimension[num % 3] /= 2; 

      num++; break; 
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Figure 2: Cubic Cell Division with 8 Nodes 

The next division paradigm cuts only the along the z axis, 
which improves the surface area to volume ratio of the scene, 
but cannot operate unless the scene has more cells in the x 
direction than number of processors operating on the 
problem.  

 
Figure 3: Z-Cut Division Method 

 
Figure 4: Z-Cut Cell Division with 16 Nodes 

3.2. Boundary Cell Computation 
After computation of the cell affinities, each node 

creates a list of its boundary cells so that it can synchronize 
intersecting boundary data during each timestep.  To do this, 
each node simply builds a list of every cell that is either one 
less than, or one greater than each of its dimensions.   

After this list has been built, it is sorted, and duplicates 
are removed.  Because the boundary cell list is computed only 
once during startup, the performance impact is negligible.  
However, utilizing these boundary cells allows us to achieve 
direct neighbor-to-neighbor communications instead of 
gather-scatter operations, drastically improving the 
performance of the simulation. 

 
Figure 5: Boundary Cell Computation 

3.3. Boundary Synchronization 
Boundary synchronization occurs any time computations 

are performed that require data from the previously 
computed boundary cells.  In our method, each node 
retrieves the boundary data using neighbor-to-neighbor 
communications utilizing one way data transfer. 

Figure 5: Boundary Cell Computation shows a two 
dimensional example of the boundary cells that each node 
needs to receive to perform its necessary computations.  
Because nodes communicate directly, this synchronization 
has a low performance impact when compared to a 
master/slave gather and scatter type synchronization 

3.4. Marker Division/Generation 
Marker division also occurs on a per node basis.  Each 

node is responsible for only its subset of the total particle 
array, which means that each node also must generate (total 

//[0] = x dimension 

dimension[0] =  

  x_cells / number_of_nodes; 
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number of cells / number of nodes) particles within its own 
boundaries.   

Because particle generate can be uniform or random, the 
generation algorithm simply generates the appropriate 
number of particles only within the node’s cell boundaries.   
Additionally, particles that are generated within any obstacle 
in the scene are discarded.   

 
Figure 6: Parallel Particle Generation 

3.5. Process Splitting 
Because the Blue Gene/Q that we are working with does 

not have any OpenGL capable display, we found it necessary 
to completely separate the simulation and rendering code.   

To accommodate this design decision, the simulation 
program outputs particle and cell data directly to stdout, 
which we either pipe directly into the renderer and/or a file. 

The rendering is then capable of reading data from a file 
or data stream, and reconstructing the frame that the 
simulation has recorded.  Additionally, the rendering 
implementation also computes marching cubes locally to 
form the final surface mesh. 

Evidently, because the rendering and simulation are 
separated, the first frame of data in the rendering is 
incomplete.  This explains why Figure 6: Parallel Particle 
Generation has already undergone an iteration of velocity 
computations and particle movement. 

 
Figure 7: Process Splitting Diagram 

3.6. Cell Velocity Computations 
Because cell velocity computation requires the boundary 

cells, each node must first synchronize the previous iterations 
results in the boundary interfaces.  However, once the 
boundaries are synchronized, the Navier-Stokes equations 
are solved locally within the node boundaries as described by 
Foster and Metaxas. 

During the next portion of computations, we compute 
divergence and equalize inflow and outflow among cells to 
preserve fluid volume.  This is accomplished by performing 
local divergence calculations and averaging data across node 
neighboring node boundaries. 

 
Figure 8: Parallel Velocity Computation 

3.7. Marker Position Interpolation 
Much like cell velocity computations, once the boundary 

cells are synchronized, each node computes its share of 
interpolated marker particle velocities and updates their 
position on a node-by-node basis.   

However, if the particle leaves the boundaries of any 
node, the particles’ node affinity must be updated.  Because 
particles are stored locally on each node, we must use a 
bidirectional data transfer to properly update its node 
affinity.   
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Figure 9: Particle Reassignment Pseudocode 

3.8. External Force Field Computation 
To accommodate more complex scenes, like a scene with 

a large wave, we had to add external force field capabilities.  
The addition of these capabilities allows us to apply external 
forces to add energy to a scene.  This also means that we can 
control the directionality of the energy, and thus, generate 
interesting phenomena like waves. 
 

 
Figure 10: Wave Generation Pseudocode 

 

 
Figure 11: Force Field Velocities 

 
Figure 12: Force Field Particles 

3.9. Obstacle Inclusion 
Another feature that we’ve included in our algorithm is 

obstacle handling.  As described in the Foster and Metaxas 
paper, we have implemented obstacles as a simple extension 
of the boundary cell calculations.  From this, we were able to 
add several additional scenes.  Creating a parallel version of 
the obstacle code was relatively straightforward, since it only 
required local cell velocity zeroing.    

 
Figure 13: Obstacle Pseudocode 

 
Figure 14: Starting and Ending states - Obstacle Scene 

3.10 Rendering Features 
In addition to our parallelized simulation, we also 

included several key additional rendering features.  The 
rendering program for the recorded simulation data includes 
time-accurate rendering options, as well as restarting, 
rewinding, and variable speed capabilities.  Ultimately, these 
features helped us to debug our simulation implementation, 
as well as prepare interesting live demonstrations.  

//send particles 

for p in particles: 

  if p is outside node bounds: 

    dest = computeDestNode(x,y,z); 

    sendParticleToDest(p, dest); 

    particles.remove(p); 

 

//receiving particles 

while (receiving): 

  particles.add(p); 

If (wave_generate == true): 

  for n in wave_duration:  

    for cell in wave_cells: 

      add_wave_velocity(cell); 

//obstacle list built by parser 

For o_cell in obstacle_list: 

  setVelocitiesToZero(o_cell); 

 



5 
 

 
Figure 15: Large City Shadow Volumes 

4. Scaling 
We were able to run our fluid simulation code on the 

Blue Gene/Q using several different configurations.  We ran 
three cubic scenes.  Each of the scenes has a spiral velocity at 
the center of the front face.  Each of these test scenes was 
run until the maximum velocity of any cell was less than 10 
percent of the scenes’ largest starting velocity.   

From this threshold value, we were able to record 
computation, synchronization, and total run times on a 
variety of node counts, ranging from 4 to 1024.  

In the first run of the tests, we enabled the data output 
on the Blue Gene/Q.  However, because we were unable to 
utilize MPI file IO, we had to gather all of the data onto rank 
zero to be output to the data file, leading to massive 
increases in synchronization times. 

Because of the increased synchronization times, we 
notice that on smaller test sizes, the optimal configuration 
actually falls in between 32 and 128 nodes.  As the problem 
size increases, we see that the scaling continues as the 
number of nodes increases. 

 
Figure 16: 16x16x16 Times - File I/O Enabled 

 
Figure 17: 32x32x32 Times - File I/O Enabled 

 
Figure 18: 64x64x64 Times - File I/O Enabled 

However, in the next series of tests, we decided to 
disable our global gather-based file I/O to simulate the scaling 
of the program as if MPI file I/O were properly implemented.  
As the following graphs show, the scaling improves 
drastically.   

Without the bottleneck of the faulty file I/O, we see that 
the scaling continues improving as we allocate more nodes to 
the problem.  Because of this, we decided not to implement 
any type of dynamic node-cell allocation sizing.  The scaling is 
a direct result of the neighbor-to-neighbor communications 
paradigm that we utilized.  If a master/slave configuration 
were used, the synchronization times would increase just as 
they did with the gathering file I/O tests seen in Figure 14: 
16x16x16 Times – File I/O Enabled, Figure 15:32x32x32 times 
– File I/O Enabled, and Figure 16: 64x64x64 Times – File I/O 
Enabled. 

In the following series of graphs, we also included both 
single and two core run times to fully compare the 
performance and scalability of our implementation.  In the 
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best case scenario, we observed a performance increase of 
80x when scaling from 1 to 1024 cores. 

 
Figure 19: 16x16x16 Times - File I/O Disabled 

 
Figure 20: 32x32x32 Times - File I/O Disabled 

 
Figure 21: 64x64x64 Times - File I/O Disabled 

5. Limitations 
Unfortunately, our method does have some limitations.  

The surface code for our method does not function properly, 
and produces unrealistic, albeit interesting results.   

Additionally, as mentioned in the Scaling section of this 
paper, we were unable to implement a proper MPI file I/O 
system, so getting renderable data has a significant impact on 
the overall performance of the simulation. 

One of the largest limitations that we had to contest with 
was the endianness of our local system versus the endianness 
on the Blue Gene/Q.  Because we output rendered data as 
binary code, the endian mismatch caused the rendering 
program to be unable to display the recorded data. 

To remedy this, we implemented on-the-fly byte order 
switching, and ensured that all of our data types were byte 
aligned on eight byte boundaries.  Unfortunately, this caused 
the simulation to run roughly 100x slower on the Blue 
Gene/Q. 

6. Additional Tools 
To facilitate our final water simulation scene, we created 

a procedural city generator.  This city generator creates a 
multilevel island with a specified number of buildings.  The 
island has specified radii for each of the levels and creates the 
buildings at random locations with widths of either two or 
three. 

It is also an important property for the fluid simulation 
that the number of obstacles is minimized, so the city 
generation script guarantees to have no duplicate obstacle 
cells, lessening the computational load on the simulation run. 

 

 
Figure 22: Small City Generation Example 
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7. Results and Discussion 
We were able to create a large-scale marker and cell 

implementation with interesting visualizations.  Of particular 
interest were the cell affinity visualizations, marker affinity 
visualizations, and obstacles.  We also added shadow 
volumes and surface opacity to truly showcase the 
simulation’s capabilities. 

 
Figure 23:  Large Shadowed City with Affinity Coloring 

 

 
Figure 24: In-Progress City Fluid Simulation 

 

 
Figure 25: Tron.png 

 
Figure 26: Tron2.png 

For this project, we ended up utilizing pair programming 
for large portions, since much of our time was spent fixing 
bugs and algorithmic errors in our code.  We learned much 
about properly using MPI and its API.  Additionally, we 
learned that it is difficult to debug parallel programs. 

Because there were many portions of the Marker and 
Cell code that had to be parallelized, it was difficult to track 
down issues in any single function.  When more than one bug 
contributed to a simulation error, it was very difficult to track 
them down.  Additionally, we learned that the 
synchronizations that are required in a problem of this nature 
can be difficult to optimize unless properly formulated. 

In total, we estimate that we spent about 400 hours on 
this project between the two of us.  Cumulatively, there were 
also nearly 400 commits to our git repo over the course of the 
project. 

8. Future Work 
We would like to complete the massively parallel 

implementation by including proper MPI file I/O.  This would 
allow us to render extremely large jobs on the Blue Gene/Q 
and retrieve data when available. 

Additionally, we would like to expand the simulation to 
include a non-uniform grid.  By implementing some form of 
voxel-based simulation, we would be able to improve the 
simulations of smooth surfaces, buildings, and other 
interesting geometries that our current incarnation cannot 
reasonably handle. 

Finally, we would like to implement dynamic load 
balancing so that particle computations can be better spread 
among the nodes.  By doing this, we can ensure that we 
achieve the fastest possible run times when computing very 
large scenes. 
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