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1. Introduction 

DEM datasets are getting larger and larger with increasing precision, so that approximating DEM can be 

useful in some situations. Conventional terrain simplification algorithms try to minimize the elevation 

error between the simplified and the original terrains [3]. This project tries to minimize the visibility 

error in terrain approximation. The error metric is defined as the average viewshed error of a number of 

random viewpoints over the terrain. In order to minimize the error, the viewshed computed on the 

approximated terrain should be as close as possible to the viewshed computed on the original terrain. 

One possible way of keeping the viewshed is to keep the points defining the viewshed, which can be 

identified by computing viewsheds at all points of the terrain. This information can be used in 

triangulation to compute approximations of the terrain. The method is compared with the maximum 

elevation error based triangulation for the average viewshed error. 

This project is inspired by the work of Ben-Moshe et al. [1], who studied visibility preserving 

simplification of TIN by computing the ridge network. They defined a visibility-based simplification 

measure, called the visibility similarity, which is the percentage of a predefined set of pairs of points that 

have the same visibility on both the simplified and the original terrains. The measure can be viewed as a 

generalization of the error metric of this project. In their algorithm, the ridge network is computed by 

analyzing the flow property of each edge. They acknowledged the close relationship between the ridge 

network and the drainage network, but they had not used the drainage network. Then the ridge 

network is approximated by collapsing edge chains, pruning short leaves, and adding back the farthest 

vertices. Finally, the terrain is approximated by a conventional method, using the ridge network as the 

constraint. Stuetzle et al. [2] studied hydrology preservation of DEM simplification. They computed the 

drainage network, and the ridge network as the drainage network of the inverted terrain, which they 

called the ridge-river network in together. Then they simplified the ridge-river network and 

reconstructed the terrain using ODETLAP. The inverse terrain is also used in this project.  

 

2. Blocking Index Map 

There are two types of points along the boundaries of a viewshed. Along a ray emanating from the 

viewpoint in 2D, the viewshed either changes from visible to invisible through a boundary point (first 

type), or changes from invisible to visible through a boundary point (second type). A boundary point of 

the first type blocks the view of the terrain beyond the point along the ray until a boundary point of the 
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second type. Call a boundary point of the first type a blocking point of the viewshed. A boundary point 

of the second type is the projection of the previous blocking point along the sightline onto the terrain. 

Therefore, although all points define the viewshed, blocking points could be the more important points 

because they and their projections are boundary points of the viewshed. If the elevations of the terrain 

are not changed much in an approximation, keeping the blocking points may also keep the boundaries 

of the viewshed. Figure 1(a) shows a viewshed where the viewpoint is located at the center of the test 

terrain. Figure 1(b) shows the blocking points of the viewshed. A point is even more important if it is a 

blocking point in a lot of viewsheds. To capture the notion, the blocking index of a point is defined as 

the number of times that the point is a blocking point of some viewshed. Assuming viewpoints can only 

be located over terrain points, to compute the blocking index of each point of the terrain, a viewshed is 

computed at each point of the terrain, and the blocking index of each blocking point of the viewshed is 

increased by 1. Call the blocking indices of all points of the terrain the blocking index map of the terrain. 

However, there is one problem of using the perspective viewshed to compute the blocking index map: 

the viewshed at a point is dependent on the height of the viewpoint. Different viewpoint heights 

produce different blocking index maps, for example, Figure 2(a) is the blocking index map of the test 

terrain with the viewpoint height = 0 and Figure 2(b) is the blocking index map with the viewpoint height 

= 1000. To compensate for this problem, this project defines and uses the orthographic viewshed, 

which is independent of the viewpoint height, to compute the blocking index map. Figure 3 shows how 

to compute the orthographic viewshed on a terrain profile. The ‘viewpoint’ is a vertical straight line and 

all the sightlines are parallel to the ground plane. A point of the terrain is visible if the sightline from the 

‘viewpoint’ through the point is not blocked by other points of the terrain. 

   
(a)     (b) 

Figure 1. (a) A viewshed and (b) its blocking points. The viewpoint is located at the center. 



   
(a)     (b) 

Figure 2. (a) The blocking index map with the viewpoint height = 0. (b) The blocking index map with the 

viewpoint height = 1000. 

 
Figure 3. Compute the orthographic viewshed on a terrain profile. The black line is the ‘viewpoint’; the 

orange rays are sightlines, which are parallel to the ground plane; the red points on the terrain profile 

are blocking points. 

 

3. Triangulation 

The terrain is approximated using triangulation. The basic method for comparison is to triangulate the 

terrain based on the maximum elevation error [3]. Given an initial triangulation of the terrain, for 

example, two triangles for a rectangle, the next point to be inserted has the maximum difference in 

elevation from the triangulation surface to the terrain. The process continues until the desired number 

of points has been inserted, and the underlying triangulation is a Delaunay triangulation. The 

approximation method of this project is to triangulate another map of the same size as the terrain, 

specified in the next chapter, using the conventional maximum elevation error based triangulation, and 

then assign the elevations of the original terrain to that of the vertices of the triangulation, to obtain a 

triangulation of the original terrain. To get an approximated terrain, the triangulation is projected onto a 

grid of the same size. 

 



4. Results 

The implementation of the algorithm is in C++ and the Delaunay triangulation is implemented using the 

2D triangulations module of the CGAL-4.2 algorithms library [4]. The test terrain is a Puget Sound 

257×257 DEM, which is a complex terrain with rivers, plains and mountains. Figure 4(a) shows the 

grayscale image of the terrain and Figure 4(b) shows the image of the inverse terrain, by negating the 

values at all points of the terrain, as suggested by Stuetzle et al. [2]. Then the blocking index map of the 

terrain and the blocking index map of the inverse terrain are computed, as shown in Figure 5(a) and 

Figure 5(b). The map in Figure 5(a) indicates ridges of the terrain, with brighter points representing 

higher or more important ridges, and the map in Figure 5(b) indicates the valleys with brighter points 

representing deeper or more important valleys. The subtraction of the two blocking index maps is 

computed, shown in Figure 6, to combine ridges and valleys in a single map. 

   
(a)     (b) 

Figure 4. (a) Puget Sound 257×257 DEM. (b) The inverse terrain. 



   
(a)     (b) 

Figure 5. (a) The blocking index map of the terrain. (b) The blocking index map of the inverse terrain. 

 
Figure 6. The subtraction of the blocking index map of the terrain and the blocking index map of the 

inverse terrain. 

The following maps are computed for triangulation: DEM + k × BIM, the addition of the terrain with k 

times the blocking index map; DEM – k × BIMinverse, the subtraction of the terrain with k times the 

blocking index map of the inverse terrain; DEM + k × BIMsubtraction, the addition of the terrain with k times 

the subtraction of the blocking index maps. These maps can be viewed as augmenting the original 

terrain with the blocking index maps, hence exaggerating its geomorphological features. Then the maps 

are triangulated and projected onto a 257×257 grid as approximations of the original terrain. 

To compute the error of the triangulations of the maps in computing viewsheds, 100000 random 

viewpoints are generated over the terrain with height above the terrain in range [1, 431] and range of 

interest in range [1, 128]. For the projection of the triangulation of each map, the viewsheds of the 

viewpoints are computed and compared with the viewsheds on the original terrain. For each viewpoint, 



the total number of points within the range of interest is computed, as well as the number of points that 

the viewshed on the projection is different from the viewshed on the terrain. The average viewshed 

error is computed as the total number of different viewshed points for all viewpoints over the total 

number of points in range for all viewpoints. 

Table 1 shows the average viewshed errors of triangulating and projecting the maps with different k’s. 

All triangulations use 1% of the original terrain points. DEM is the original terrain whose triangulation is 

compared with. The value of k ranges from 0.1 to 0.6. For a wide range of k the triangulations of the 

maps obtain a smaller viewshed error than that of the original terrain. The smallest error, about 0.174, 

appears in k = 0.1 for DEM – k × BIMinverse and k = 0.2 for DEM + k × BIMsubtraction, which is a significant 

improvement over the base value, 0.263. However, the error gets worse with increasing k and is worse 

than the base value for large k’s, for example, k = 0.4 for DEM + k × BIM and k >= 0.5 for DEM + k × 

BIMsubtraction. The error also gets worse with decreasing k’s from somewhere around 0.1 (results not 

shown). Therefore, k = 0.1 seems to be the sweet spot for the particular terrain and particular level of 

triangulation. Overall, DEM + k × BIMsubtraction is the best because it is mostly better than the other maps 

and never worse than the original terrain in each k. 

Table 1. Average viewshed errors. 

Triangulation (1%) Average Viewshed Error 

DEM 0.263433 

 k = 0.1 0.2 0.3 0.4 0.5 0.6 

DEM + k × BIM 0.210981 0.229637 0.230849 0.27303 0.245065 0.24368 

DEM – k × BIMinverse 0.17366 0.188704 0.238911 0.2578 0.270015 0.296286 

DEM + k × BIMsubtraction 0.187634 0.173688 0.181667 0.181894 0.181032 0.190783 

 

However, how closely do the triangulated terrains resemble the original terrain? Table 2 shows the 

average elevation errors of the various triangulations, while the elevation range of the terrain is [0, 

43165]. The maximum elevation error based triangulation indeed achieves the minimum average 

elevation error, and the error gets worse and worse with the increasing portion of the blocking index 

map. However, when the average viewshed error is small and k is also small, the average elevation error 

is not too much worse, for example, k = 0.1 for DEM – k × BIMinverse and k = 0.1 or 0.2 for DEM + k × 

BIMsubtraction. Therefore, one can decide how much the viewshed error improves and how much the 

elevation error deteriorates in choosing k. 

Table 2. Average elevation errors. 

Triangulation (1%) Average Elevation Error 

DEM 1069.08 

 k = 0.1 0.2 0.3 0.4 0.5 0.6 

DEM + k × BIM 1225.11 1304.76 1342.39 1253.94 1527.22 1404.16 

DEM – k × BIMinverse 1158.59 1493.79 1793.36 1971 2057.01 2327.71 

DEM + k × BIMsubtraction 1090.55 1179.82 1357 1491.65 1481.29 1469.74 

 



 

5. Conclusions 

This project has studied terrain approximation while retaining visibility properties, which are measured 

by the accuracy of viewshed computations. A point is defined as a blocking point if the viewshed 

changes from visible to invisible pass the point. The blocking index map is calculated by computing 

orthographic viewsheds at all points of the terrain and the blocking index of each point is the number of 

times that it is a blocking point of some viewshed. The blocking index map captures the ridges while the 

blocking index map of the inverse terrain captures the valleys. The subtraction of the blocking index 

maps captures both. To compute the approximations, the terrain is augmented with the blocking index 

maps, and then triangulated and projected onto the grid. Results show that the approximations can 

truly reduce the average viewshed error, although the average elevation error is increased. 

There is a lot of future work to do. The first thing is to test the method on different and larger terrains to 

further verify its effectiveness and to find good values of k for general terrains or for particular types of 

terrains. Another thing is to better utilize the blocking index map, as adding it to the terrain is only one 

way of using it. Besides, instead of computing viewsheds at random viewpoints, the approximations can 

be used in other visibility related applications. 
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