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Motivation
Ray tracing and photon mapping can 

render realistic results. We want to implement 
accurate wavelength dependent effects to 
properly render materials like crystal and 
rainbows, and extend photon mapping for 
refractive caustics and participating media.

Rendering the interaction between light 
and microscopic particles in a scene, such as 
smoke or floating dust, has traditionally been a 
computationally intensive and difficult process.  
To produce an accurate rendering requires 
simulation, or reasonably accurate approximation, 
of how the light interacts with these particles on a 
fine level of detail.  Specifically, when light 
enters an area of some participating media, it will 
travel until it hits a particle, then it is scattered in 
another direction and travels until it hits another 
particle, where it is scattered again, until the light 
escapes the media.

Rainbows are one of the more visually 
impressive phenomena in nature.  They are 
caused by refraction and dispersion in small water 
particles in the atmosphere.  This simple 
explanation masks all of the complexity which 
makes them an active area of research.  Many of 
the characteristics of rainbows are not fully 
captured by refraction and dispersion.  For 
example, the supernumerary bows, those which 
occur beneath the primary bow, is caused by 
interference of light.

Related Work

Participating Media

 Rendering light's interaction with 
participating media is similar to modeling 
subsurface scattering in partially translucent 

materials such as marble or milk, which is often 
rendered by approximating the solution to the 
volume rendering equation [Jensen 2001].  
However, this approximation is quite 
computationally expensive, and does not easily 
work with photon mapping techniques that are 
often used for many other lighting conditions.  
Fortunately, Jensen et al. have proposed a method 
for using volumetric photon mapping to render 
light’s interaction with participating media 
[Jensen 1998].

Jensen et al. proposed a method for 
extending the photon mapping algorithm to 
properly handle photon interactions with 
participating media through use of volumetric 
photon mapping [Jensen 2001].  The key 
difference between the old method of photon 
mapping and this new method is the addition of a 
second map for photons to be stored in: the 
volumetric photon map.  In typical photon 
mapping simulations, photons are stored at the 
surfaces that they interact with, but when 
involving participating media, photons must also 
be stored in the empty space between surfaces 
wherever an interaction between a photon and a 
particular particle took place[Jensen 2004].  
Simply put, these photon interactions that do not 
occur at a surface are stored in the volumetric 
photon map.

Rainbows

Sadeghi, Munoz, Laven, Jarosz, Seron, 
Gutierrez, and Jensen [2012] published a paper in 
which they tabulated data by running a simulation 
of light interacting with a single water droplet.  
Their simulation took into account dispersion, 
interfere, diffraction, polarization, and differing 
shapes of water droplets into account.  This lead 
to extremely accurate renders which mimicked 
many unusual phenomena which could not be 
reproduced by earlier algorithms.



Their simulation consisted of shooting 
rays at a water droplet then collecting them on a 
sphere around the water droplet.  This is done for 
thirty three distinct wavelengths.  Each ray also 
keeps track of its parallel and perpendicular 
polarization.  After all the rays for one 
wavelength are cast, the points on the collecting 
sphere where the rays ended on are made into 
quad patches.  After this is done for every 
wavelength, rays are then cast from the center of 
the sphere to the surface.  Data is then 
interpolated using all patches the ray intersects. 
The value of each direction is then saved for use 
during a render.

The goal was to recreate this algorithm; 
however, this was not achieved.  Instead 
approximations were made to render rainbows.  
All of the approximation come from physics and 
optics, whereas the above algorithm is a 
simulation.  This means the approximations make 
assumptions which limit what phenomena they 
can render.

The method the paper was directly trying 
to improve on was the Lorenz-Mie theory.  This 
provides an analytical solution to light scattering 
through a sphere.  This solution can be used to 
render rainbows only with spherical water 
droplets.  However, due to gravity and water 
tension, the shape of water droplets become less 
spherical as they increase in size. 

Algorithms

Fresnel Reflection

When light from one medium to another, 
both reflection and refraction might occur. 
Viewing a surface from a grazing angle gives off 
more specular reflection compared to viewing the 
surface directly.

The Fresnel equations describes what 
amount of light is reflected and what amount is 
refracted. The equations are based off of the law 
of reflection and Snell’s law, and depends on the 
polarization of the incident ray.

For our purposes, we used Schlick’s 
approximation to approximate the contribution of 
the Fresnel term in the specular reflection of light 
from a non-conducting surface.

Schlick’s approximation for calculating R, 

the reflectance coefficient:

R(θ)=R0+(1−R0)∗(1−cos(θ))
5

Where R0 is the reflection coefficient for 
light parallel to the surface normal, given by:

R0=(
n1−n2

n1+n2

)
2

θ is the angle between the incoming ray 
and the normal to the surface it collides with. n1 
and n2 are the refractive index of the incoming 
and outgoing materials.

When viewing the surface parallel to the 
surface normal, the reflection coefficient is the 
small R0, and as the viewing angle approaches 0, 
the coefficient approaches 1 rapidly.

After receiving the color contribution 
from ray tracing, we multiply the color by R. Due 
to conservation of energy, the transmission 
coefficient T is given by:

T=1−R

Likewise, we multiply the refraction 
contribution by T.

Viewing the reflection directly results in a faint 
reflection. Note that the reflecting object has 
transparency and depth; the second reflection is 
due to rays bouncing off the back wall. 



Viewing the wall at an angle results in a 
clearer reflection.

Note that while a material must have a 
refractive index for Fresnel reflection to work, it 
does not actually need to be transparent. If the 
material has no refractive properties defined, we 
default back to the original reflection by setting R 
to 1. The effects of Fresnel reflection are most 
noticeable with materials that have a slightly 
higher index of refraction than air. Materials with 
higher refractive indices tend to overwhelm the 
reflection, and reflections are then only visible at 
extreme angles.

Refraction

When light hits a material with a different 
refractive index, its phase velocity changes, 
giving off the appearance of bending. Snell’s law 
describes the phenomenon as the relationship 
between angle of incidence and refractive index.

sinθ1

sinθ2

=
n2

n1

Where θ1 is the angle of incidence, and θ2 
is the outgoing angle of incidence. n1 is the 
refractive index of the material the ray is leaving, 
and n2 is the index of the material the ray is 
entering.

The directional vector of the refracting ray 
can be calculated with:

v refract=
n1

n2

l+(
n1

n2

cosθ1−cosθ2)n

Where l is the normalized directional 
vector of the incoming ray, and n is the normal 
vector of the surface the ray hits. cosθ1 and cosθ2 
can be found by:

cosθ1=−n⋅l

cosθ2=√1−(
n1

n2

)

2

(1−(cosθ1)
2
)

Note that cosθ1 must always be positive, 
multiplying by -1 if necessary. If the radicand 
under the equation for cosθ2 is negative, it 
indicates total internal refraction. In this case, the 
ray reflects off the object completely, which can 
be calculated with:

v reflect=l+(2cosθ2)n

A transparent cube refracts light with a pink 
sphere behind the cube.

Dispersion

Refraction is wavelength dependent, so 
the angle of refraction depends on the 
wavelength. Since white light is composed of 
multiple frequencies of light, it appears to split 
into different colors as each wavelength of light 
refracts in their own directions.

In our implementation, we use multiple 
dispersion samples to calculate dispersion colors.

When a not-yet-dispersed ray strikes a 
transparent object, we split the ray into multiple 



monochromatic rays. We partition the range of 
wavelengths into sections depending on the 
number of dispersion samples we use, and choose 
a random wavelength from each section.

We used Cauchy’s equation to 
approximate the index of refraction as a function 
of wavelength.

n(λ)=B+
C

λ2

Where n is the index, λ is the wavelength, 
and B and C are coefficients determined by the 
type of material. Cauchy’s equation just serves as 
an approximation, and is only accurate in the 
visible spectrum of light. B while technically 
incorrect, Cauchy’s equation is a good enough 
model for computer graphics dealing with visible 
light.

After shooting out multiple dispersion 
rays, we convert wavelength into an RGB color 
scheme, and average the colors together.

A light source far above the sphere is visible 
through the sphere, which has an extremely 
high refractive index.

Photon Mapping

For the most part, refraction and 
dispersion works the same for photon mapping as 
it did for ray tracing.

Remember that total internal reflection 
occurring inside in object should not be visible, 
so do not add a photon to the kd-tree when a 
photons reflects off the inside of a refractive 

object.

A sphere with visible internal reflections
For ray tracing dispersion effects, we had 

to jitter the wavelengths and send out multiple 
dispersion rays of different wavelengths. For 
photon mapping, just sending a single photon of a 
random wavelength should be fine. This is 
because when gathering the indirect illumination 
when ray tracing with photons, the function 
gathers the nearest photons. As long as a large 
enough number of photons are collected, the 
color returned should be accurate.

For example, if a red, green, and blue 
photons are shot towards the same point, 
gathering the indirect illumination of that point 
should return white. The way we chose RGB 
values from wavelengths is an approximation, so 
sometimes when an area should be white, the 
color is slightly pinkish. But for the most part, the 
colors are accurate enough.



Transparent spheres with caustics

When not enough photons are collected 
when calculating indirect illumination, the colors 
may appear splotchy. This can be fixed by 
increasing the number of photons collected, or 
dramatically increasing the number of photons 
fired. The accuracy of photon mapping depends 
on the parameters set, and the constants chosen 
for material properties.

Incomplete render of prism caustics

Dispersion effects appear splotchy due to low number 
of photons collected

Participating Media

The problem that arises with volumetric 
photon mapping is how to determine if a photon 
interacts with a participating media.  Of particular 
importance is the density of the media, as a more 
tightly packed cluster should lead to a higher 
amount of interaction.  Given a photon traveling 
in direction r from origin point o, we want to be 
able to find a plausible value d such that the 
photon interacts with the participating media at o 
+ dr.  This can be accomplished by using the 
extinction coefficient of the media, which is 
essentially a parameter that describes how much 
light a substance absorbs.  With the extinction 
coefficient σt , and a random variable χ between 
zero and one, such a value d can be calculated as:

d=
−log(χ)

σt

This works perfectly for homogenates media, and 
can be extended to also support heterogeneous 
media by varying the extinction coefficient per 
location in the media, so that light is absorbed 
more in certain places than others [Wojciech 
2008].  This kind of approximation is less 
accurate, but often produces visually acceptable 
renderings.

Next, once a point of interaction for the 
photon is determined, the photon is stored in the 
volumetric photon map, and then either absorbed 
or scattered from the point.  As is usual for typical 
photon mapping, this interaction is chosen by 
various probabilities of the media.  In this case 
the probability of the photon being absorbed is 
the ration of  σa  to σt where σa is the absorption 
coefficient of the substance. This makes the 



probability of the photon being scattered 1-pra, 
and the scattering coefficient σs=σt-σa . Given 
these probabilities, the type of interaction for a 
photon is chosen by Russian roulette, and either 
tracing photon either of the photon terminates, or 
a new scattering direction is computed depending 
on the media, and the photon continues to be 
traced through the scene.

For a photon traveling through a medium, 
it will travel in it’s direction until one of two 
things happens: it interacts with the participating 
media, or it hits a surface.  In order to 
accommodate for both of these options, a ray is 
cast from the photon at position o in the direction 
it is traveling, r, to determine what surface that it 
would hit if it didn’t interact with the 
participating media.  This produces a value t, 
such that the surface the ray hit is at x = o + tr.  
Then, a value for d of where the photon would 
interact with the media is calculated from the 
above formula.  If d < t, then the photon interacts 
with the media at position x = o + dr, otherwise, 
it interacts with the surface at x = o + tr.

If a photon interacts with a surface, it is 
stored in the surface photon map as normal, but if 
it interacts with the participating media, it is 
stored in the volumetric photon map.  There are a 
few reasons why these maps are kept separate.  
First, keeping them separate means that they can 
be calculated independently at different densities.  
If more detail is needed for the volumetric map 
than the surface map or vice versa, photons can 
be traced through the scene multiple times with 
different amounts in order to populate the maps 
with the desired density.  Typically, however, the 
volume and surface photon maps are constructed 
at the same time.  Second, when rendering the 
scene, it is incorrect to use the volume photons to 
light on a surface, or to use surface photons to 
render light in the volume.  Finally, it leaves the 
surface photon map less cluttered, so those 
lookups are much more efficient [Jensen 1998].

Estimating radiance at a particular point in 
the volume using these photon maps can be 
viewed as a simple extension to the surface 
radiance estimation [Jensen 2004]].  The estimate 
at a point x in the direction w is the integral 
around all incoming directions of the radiance 
incoming radiance in that direction multiplied by 
the bi-directional reflectance distribution function 
at that point between those directions:

Li(x , w⃗)=∫
Ω

f (x , w⃗ ’ , w⃗)L(x , w⃗ ’)dw

This particular estimate is infeasible to use to 
precisely calculate the radiance, but can be 
estimated using the constructed photon map.  By 
using the derivation of Jensen et al., this exact 
calculation can be reduced to the approximation:

Li(x , w⃗)=
1

σ s(x )
∑

1

n

f (x , w⃗ p)
ΔΦp( x , w⃗ ' p)

4
3

π r3

Here, σs(x) is the scattering coefficient of the 
medium at x, or $σs(x) =σt(x) – σa(x), Φs is the in 
scattered radiance of the photon p stored in the 
photon map, and r is the radius of the smallest 
sphere centered at x that surrounds all n closest 
photons [Wojciech 2008].  The primary difference 
between the surface radiance estimate and this is 
that the volume estimate uses photons in three 
dimensions, so the radiance estimate is divided by 
the volume of the enclosing sphere, rather than 
the area of the enclosing disc.

In order to render the scene, this radiance 
estimate must be applied along the eye direction 
to accumulate the surface radiance estimation as 
well as the contribution of radiance from the 
media [Jensen 2004].  This can be done using a 
simple ray marching algorithm along the ray from 
the eye point to the point where the ray intersects 
a surface.  The idea behind this ray marching 
algorithm is to evaluate the radiance estimation of 
the media along evenly spaced points along the 
ray, as in figure X.  At each discrete point along 
the ray, the volume estimated radiance is 
calculated using the above formula.  Each of 
these estimates is combined and then added to the 
surface radiance estimate and color by:

L(x , w⃗)≈L(xs , w⃗)+∑
t=0

S−1

σ s(x t)

where L(xs , w⃗) is the radiance approximation 
at the surface point, and each radiance term in 
the sum are the volumetric radiance estimates 
taken along the ray [Jensen 1998].

Rainbows

Descartes

Four hundred years ago, Rene Descartes  
produced the first detailed study of rainbows 
[Casleman].  Descartes figured out rainbows are 
caused by the bunching of rays after they enter a 
water droplet reflect some number of times then 
exit the sphere.  The primary bow is caused by 
one reflection within the sphere.  For any ray that 



enters the water droplet with an angle of i as 
shown:

T
he total deflection is therefore:

D=4r−2i

Then by using Snell's law:

sin( i)=nsin (r )

r=arcsin (
sin(i)

n
)

D=4arcin(
sin(i)

n
)−2 i

The rainbow is caused by the bunching up of rays 
to form a caustic ray.  This can be found by 
finding the minima of D as a function of i.  
Therefore the angle I of the caustic ray is:

i=arccos(√ n2
−1
3

)

The angle of deflection can then be found by 
plugging this value back into the equation for D.

This results in the finding of the angle of 
the caustic ray, but does not directly explain why 
a rainbow shows the spectrum of color.  This is 
due to the fact that different wavelengths have 
slightly different indexes of refraction.  This 
causes the angle of the caustic ray to be slightly 
different causing the rainbow to show the entire 
spectrum.

This also only accounts for the primary 
bow, because the angle was only calculated for 
one reflection.  The formulas only need to be 
slightly altered to find the caustic ray after two 
reflection, resulting in the secondary bow.  This    
process can be continued for higher order bows; 

however, they are almost never visible, because 
they are near the sun, and have very little energy.

In order to use this to render an actual 
rainbow using Descartes equations requires a 
little more work. The equations work with light  
coming from the sun, whereas ray tracing works 
with rays coming from the camera.  In order to 
reverse this process there are two options.  The 
first is to compute the wavelength based on the 
angle between the incoming direction and the 
direction to the sun.

Secondary bow, made by solving for 
wavelength

The image above shows a rendering using 
this method.  By using Descartes equations, it is 
possible to solve for  n given D, by using the 
following equation:

n=
1
2

√(2(k+1)
2
−2)cos (D)+2(k+1)

2
+2

 ,where k is indicates how many reflections.

Then by using the approximation:

n=B+
C

λ
2

it is possible to find the wavelength of the caustic 
ray, where B and C are constants based on the 
material.

The other method that makes use of 
Descartes equations is to samples across the 
spectrum, and for each of these wavelengths 
compare the actual angle of deflection to the 
caustic angle of deflection.  Then take a 
contribution of the color of the difference is 
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within some bound.  The color should also be 
weighted that a difference of zero corresponds to 
one, and as the difference increases in magnitude 
the weight goes to zero.

This method introduces noise and 
blending, which causes the rainbow to appear 
more accurate.  In an actual rainbow, these 
appearances are caused by diffraction and 
polarization, but this added noise recreates similar 
visual results as shown below:

Sampling with Descartes

Airy

Descartes work was before light was well 
understood.  After Fresnel came up with his wave 
theory, George Airy applied it to spheres.  His 
integral explained that interference caused the 
supernumerary bands.  When the wave of light 
leaves the sphere the light is in an S shaped front, 
which intersects itself, which causes interference.  
Airy solved this problem with the integral of

A (m)=∫
−∞

∞

cos( π
2
(s3

−ms))ds

where m is proportional to the angle from the 
caustic ray.

This integral has no analytical solution, 
but can be approximated by a Taylor series.  This 
was first performed by De Morgan, who came up 
with the following approximation:

A(x )=A(0)(1−
1
3

x3

3!
+

1⋅4
32

x6

6 !
−…)

+ A ' (0)(x−
2
3

x4

4 !
+

2⋅5
32

x7

7 !
−…)

where ,

A(0)=
1

3
1
3∗Γ(

1
3
)

A '(0)=
1

3
2
3∗Γ(

2
3
)

This approximation is only good for values 
between -4 and 5.  Anything outside these bounds 
will have great error from the real value of the 
integral.

To render a rainbow using they Airy 
integral, a truncated version of De Morgan's 
approximation must be used.  Then Descartes 
equations must be used to find the deflection 
angle, and the difference between this and the 
viewing angle must be used in De Morgan's 
approximation to find the weight.  The proportion 
to make a realistic rainbow as not found, but a 
proportion which rendered the desired affect, 
supernumerary bows, was used.  As shown below, 
this was achieved:

Supernumerary Bows using the De Morgan 
Approximation

The frequency and amplitude of these bows is too 
high.  Also the artifact on the right is caused by 
error in the De Morgan approximation.  The 
render does show that as the bows go away form 
the primary bow, they do start to blend together 
and become less intense.  To render the bows 
more accurately, the proportion from the 
difference to the value passed to the De Morgan 
approximation must be tinkered with.



Lorenz-Mie

Airy's integral did not solve the problem 
to light scattering through a sphere, it was an 
approximation itself.  The solution to light 
scattering in a sphere was first published by Mie 
in 1908.  His solution took into account the full 
behavior of light.

To render a rainbow using this solution, I 
made use of existing code which solved the 
equations, because the Physics and Mathematics 
behind the solution were too in depth for my 
knowledge.  The implementation I used was 
based on papers by Hong Xue[2004] and 
Wiscombe[1980].

In order to render anything using these 
calculations in any reasonable amount of time, 
the data must be precomputed on lattice points.  
Then during rendering the data can be 
interpolated from these lattice points to find the 
values at intermediate values.

The calculations are still intensive and 
create large data files.  These files can then be 
read into the renderer and then lookups can be 
performed quickly. Unfortunately, I was unable to 
make a good render of a rainbow from the data, 
because the Mie solution deals with light 
intensity.  Any rainbow I was able to make was 
too spotty and dark, or had too much background 
noise.

Much of the interesting data, such as 
supernumerary bows, were hard to differentiate 
from most of the data.  The render below mapped 
values from the max value to the average value 
from red to black, and the average value to the 
minimum value from black to blue for one 
wavelength on a logarithmic scale:

Render of range of values using Mie solution

The small variations have a clear pattern, but I 
was not able to separate them to render a rainbow. 
Also, these values oscillate between the average 
and below average.  The maximum value occurs 
at theta equal to zero, not in the rainbow.

Results

Gems

Fresnel reflections and refractions look 
accurate for both ray tracing and photon mapping.

With dispersion, the images contained lots 
of noise during ray tracing, which could be 
remedied by either increasing sample sizes or 
using anti-aliasing, both of which would 
dramatically decrease performance.

With dispersion, colors might seem off on 
occasion due to the random nature of both the ray 
trace and the photon mapping. This could be 
fixed with a more accurate conversion of 
wavelength to RGB value.

Renderings using photon mapping cause a 
huge hit in performance, and may take hours to 
render depending on the scene, without anti-
aliasing or soft shadows.



Final render of a diamond

Ray marching through participating media.  
Volume radiance estimates are computed at 
discrete evenly spaced points along the ray to 
approximate the radiance along that ray. 
(Figure taken from [4]).

Participating Media

Running this algorithm on a number of 
test scenes show promising results with a few 
obvious flaws.  Figures X-Y show scenes that 
render a) only primitives, b) only the radiance 
contribution from participating media, and c) the 
final image.  The radiance contribution from 
participating media shows almost exactly what 
would be expected: a distribution of light 
throughout the scene as if there is some dust-like 
substance in the room clustered closer to light 
sources.  In particular, in the cornell box scenes, 
even the diffuse light reflected off of the walls is 
visible in the media, though it gets lost in the final 
render.

While the results look promising, there are 
noticeable problems with them, namely the noise 
in the render.  Using this algorithm, isolated 

bright spots are common, especially when a ray 
shot through a pixel comes in close contact to a 
surface at a grazing angle.  This could have 
resulted for a few reasons.  Using ray marching 
chooses evenly spaced points to gather light from, 
but these points aren’t necessarily analogous 
between adjacent pixel rays.  This can lead to one 
or two points along a ray that “get lucky” and hit 
a dense pocket of photons, where neighboring 
pixels might be too far from these (in the ray 
direction) to be quite as bright.  Alternatively, any 
number of bugs could have been introduced, 
including incorrect calculation of photon energy 
at an intersection or incorrect gathering of 
photons.

In addition to these bright spots, what 
appear to be dark “artifacts” also appear in the 
images.  These may be caused by similar 
problems to the bright spots, but appear to be less 
isolated.  Instead, these dark spots may in fact be 
caused by the randomness of photon mapping, 
where an area might be darker simply because not 
enough of the photons happened to get stored 
there, and shooting more photons in the scene 
may help to address this problem.  

In terms of run time, the results are much 
less exciting. Even with only 10,000 photons shot 
into the scene, 100 photons gathered at each 
radiance estimate, and only 5 samples taken in the 
ray marching algorithm, even the simple scene in 
figure X took 64 minutes and 36 seconds to 
render. This is due to the nature of ray tracing 
being a very computationally intensive algorithm 
in addition to ray marching adding an additional 
level of complexity. Gathering the n nearest 
photons to a point is at least O(n) for a very good 
gathering algorithm. Taking m samples in the ray 
marching algorithm means that for each ray, it 
takes O((m+1)n) time to approximate the 
radiance ( m for the points along the ray, plus the 
point on the surface). Combining this with the 
fact that there is one ray per pixel, with p pixels it 
takes O(cp(m+1)n) time to compute, where c is 
an additional coefficient based on how much 
other work is done per ray.  Unsurprisingly, this 
complex of an algorithm takes enormous amounts 
of time to compute.



Simple scene with Cornell 
Box and directed light 
overhead.  Rendered tracing 
10,000 photons, using 5 
sample points for the ray 
marching algorithm, and an 
extinction coefficient of 0.5. 
The base geometry to be 
rendered.

The contributing radiance 
from the participating media.

The final render.

Rainbows

Rainbows are a visually stunning 
phenomena which are still not entirely 

understood.  The various theories about rainbows 
approximate their behavior and are thus unable to 
render accurate rainbows.  Each successive theory 
also requires more computation in order to render 
a quality rainbow as well.

The first method of that used Descartes's 
theory, was by far the quickest, because it did not 
require sampling.  However, the results were not 
good.  This is partially due to the complex nature, 
but also due to the method of converting between 
wavelength and RGB I implemented.  My 
implementation broke the wavelengths into linear 
gradients which when used with jittered sampling 
was alright, but the first method of using the 
Descartes equations accentuated this problem.

The second method gave quite good 
results, and was decently fast.  Due to the 
sampling the actually rainbow was smooth, and 
faded from the background.  The only flaw was 
that it was missing some of the smaller, yet more 
interesting phenomena.  This is because Descartes 
did not have knowledge of all the characteristics 
of light at the time when he formulated these 
equations.  For a small budget this method can 
produce decent results.

By using De Morgan's approximation to  
the Airy Integral, it is possible to render much 
more accurate rainbows.  However, it does 
require some tinkering with constants and a 
considerable amount of time.  The method also 
has some error which could cause problems as 
well.  De Morgan's approximation can only 
approximation the integral between -4 and 5.  
Also the infinite series in De Morgan's 
approximation must be truncated.  By using too 
few terms, the number of supernumerary bows 
decreases, and each bow begins to blend too 
much creating a white band in the center, as 
shown below:



Too few terms used in De Morgan 
Approximation

Lorenz-Mie theory does provide a very 
accurate way to render rainbows, but it does take 
some work to take the initial data from the 
solution and make it usable for Graphics.  
However, it is extremely to calculate, making it 
impossible to compute while rendering.  For this 
reason it is necessary to precompute the values 
then read them in during rendering.  This means 
that for a good result, a large amount of time must 
be spent precomputing the results for one set of 
parameters.  It took me on my Lenovo 45 minutes 
to compute 100 wavelengths for angles between 0 
and π using a delta .0001.  It later took me 5 
hours to compute 1000 wavelengths for the same 
angles.

Conclusion

Gems

We added Fresnel reflection, refraction, 
and dispersion for more accurate lighting effects 
when rendering transparent objects. Many 
approximations were used, which could be a 
possible path for improvement. The biggest 
drawback of these lighting effects is the extra 
computational costs, especially with photon 
mapping. Our images also contain lots of noise, 
which could be remedied by either increasing 
sample sizes or using anti-aliasing, both of which 
would dramatically decrease performance.

Participating Media

Obviously, this algorithm cannot be used 
in any sort of real time application, but when 
accurate renderings are desired, this can produce 
high quality images.  In terms of speed, there are 
a number of potential optimizations, the first of 
which is parallelization.  Since each ray need only 
access the photon map and geometry, and has no 
need for communicating with other rays, simply 
running each ray’s calculation on a different 
thread could result in a much faster rendering 
time.  Even more ideal than CPU parallelization 
would be massive GPU parallelization, sharing 
the photon map between hundreds of GPU 
threads and running each ray on a thread would 
result in dramatic speedup.  Additionally, the ray 
marching algorithm could be improved by doing 
adaptive ray marching, which starts with a large 
time step, and recursively halves the time step if 
the radiance differs too much in between 
measurements.  In this way, a smaller timestep 
could be used in most situations, which would 
improve render times dramatically.

Rainbows

Rainbows are a complicated phenomena, 
which are complicated to render.  The best 
possible solution is to simulated a single water 
droplet and use that data.  However, in lieu of this 
technique it is possible to render rainbows by 
making use of various theories in optical physics.  
Each method has a trade off between quality and 
computing time.  The quality comes by way of 
what phenomena can be rendered, which all 
require more time.  Although each successive 
phenomena alters the overall rainbow by a small 
amount, its inclusion does enhance the overall 
rainbow, because it more accurately mimics a real 
rainbow.

Future Work

Gems

Speeding up up the rendering process is 
the biggest issue to work on. Something that 
would have been cool to add given more time was 
volume absorption, to more accurately simulate 
color properties of crystal structures would have 
made for a more brilliant diamond render. Using 



different gem models would have also been great, 
as the properties of gems vary greatly with their 
shape. Getting the normal diamond model 
rendering was extremely difficult due to lack of 
triangle faces. Something else that should have 
been added was better support for rendering 
gems, participating media, and rainbows at the 
same time. It is possible, but many bugs exist in 
the code preventing the best renderings and 
performance issue when trying to render all at 
once.

Participating Media

As mentioned before, speeding up the 
algorithms by parallelization and using adaptive 
ray marching would be highly desirable additions. 
It would also be very interesting to vary the 
extinction coefficient by position to properly 
model heterogeneous media.  This could either be 
a static scene with randomly generated 
heterogeneous media, or a smoke simulation 
could be used in conjunction with these 
algorithms to create realistic renders of the 
simulated substance. Produced solutions would 
also benefit from some method to more evenly 
distribute photons in case of low photon counts, 
to avoid “splotchy” artifacts in the final render. 

Rainbows

Improving the Airy and Lorenz-Mie 
renders would allow for a better comparison 
between each of the methods.  It would also 
possibly allow for direct comparisons and the 
generation of images that show exactly how each 
successive theory changes the render of the 
rainbow.

Implementing the algorithm in the Related 
Works section would allow for more accurate 
renders.
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