
Enhanced Ray Tracing
Participating Media by Brian Stauffer

Rainbows by Max Curran

Gems by Gary Lu

Motivation
Ray tracing and photon mapping can

render realistic results. We want to implement
accurate wavelength dependent effects to
properly render materials like crystal and
rainbows, and extend photon mapping for
refractive caustics and participating media.

Rendering the interaction between light
and microscopic particles in a scene, such as
smoke or floating dust, has traditionally been a
computationally intensive and difficult process.
To produce an accurate rendering requires
simulation, or reasonably accurate approximation,
of how the light interacts with these particles on a
fine level of detail. Specifically, when light
enters an area of some participating media, it will
travel until it hits a particle, then it is scattered in
another direction and travels until it hits another
particle, where it is scattered again, until the light
escapes the media.

Rainbows are one of the more visually
impressive phenomena in nature. They are
caused by refraction and dispersion in small water
particles in the atmosphere. This simple
explanation masks all of the complexity which
makes them an active area of research. Many of
the characteristics of rainbows are not fully
captured by refraction and dispersion. For
example, the supernumerary bows, those which
occur beneath the primary bow, is caused by
interference of light.

Related Work

Participating Media

 Rendering light's interaction with
participating media is similar to modeling
subsurface scattering in partially translucent

materials such as marble or milk, which is often
rendered by approximating the solution to the
volume rendering equation [Jensen 2001].
However, this approximation is quite
computationally expensive, and does not easily
work with photon mapping techniques that are
often used for many other lighting conditions.
Fortunately, Jensen et al. have proposed a method
for using volumetric photon mapping to render
light’s interaction with participating media
[Jensen 1998].

Jensen et al. proposed a method for
extending the photon mapping algorithm to
properly handle photon interactions with
participating media through use of volumetric
photon mapping [Jensen 2001]. The key
difference between the old method of photon
mapping and this new method is the addition of a
second map for photons to be stored in: the
volumetric photon map. In typical photon
mapping simulations, photons are stored at the
surfaces that they interact with, but when
involving participating media, photons must also
be stored in the empty space between surfaces
wherever an interaction between a photon and a
particular particle took place[Jensen 2004].
Simply put, these photon interactions that do not
occur at a surface are stored in the volumetric
photon map.

Rainbows

Sadeghi, Munoz, Laven, Jarosz, Seron,
Gutierrez, and Jensen [2012] published a paper in
which they tabulated data by running a simulation
of light interacting with a single water droplet.
Their simulation took into account dispersion,
interfere, diffraction, polarization, and differing
shapes of water droplets into account. This lead
to extremely accurate renders which mimicked
many unusual phenomena which could not be
reproduced by earlier algorithms.

Their simulation consisted of shooting
rays at a water droplet then collecting them on a
sphere around the water droplet. This is done for
thirty three distinct wavelengths. Each ray also
keeps track of its parallel and perpendicular
polarization. After all the rays for one
wavelength are cast, the points on the collecting
sphere where the rays ended on are made into
quad patches. After this is done for every
wavelength, rays are then cast from the center of
the sphere to the surface. Data is then
interpolated using all patches the ray intersects.
The value of each direction is then saved for use
during a render.

The goal was to recreate this algorithm;
however, this was not achieved. Instead
approximations were made to render rainbows.
All of the approximation come from physics and
optics, whereas the above algorithm is a
simulation. This means the approximations make
assumptions which limit what phenomena they
can render.

The method the paper was directly trying
to improve on was the Lorenz-Mie theory. This
provides an analytical solution to light scattering
through a sphere. This solution can be used to
render rainbows only with spherical water
droplets. However, due to gravity and water
tension, the shape of water droplets become less
spherical as they increase in size.

Algorithms

Fresnel Reflection

When light from one medium to another,
both reflection and refraction might occur.
Viewing a surface from a grazing angle gives off
more specular reflection compared to viewing the
surface directly.

The Fresnel equations describes what
amount of light is reflected and what amount is
refracted. The equations are based off of the law
of reflection and Snell’s law, and depends on the
polarization of the incident ray.

For our purposes, we used Schlick’s
approximation to approximate the contribution of
the Fresnel term in the specular reflection of light
from a non-conducting surface.

Schlick’s approximation for calculating R,

the reflectance coefficient:

R(θ)=R0+(1−R0)∗(1−cos(θ))
5

Where R0 is the reflection coefficient for
light parallel to the surface normal, given by:

R0=(
n1−n2

n1+n2

)
2

θ is the angle between the incoming ray
and the normal to the surface it collides with. n1
and n2 are the refractive index of the incoming
and outgoing materials.

When viewing the surface parallel to the
surface normal, the reflection coefficient is the
small R0, and as the viewing angle approaches 0,
the coefficient approaches 1 rapidly.

After receiving the color contribution
from ray tracing, we multiply the color by R. Due
to conservation of energy, the transmission
coefficient T is given by:

T=1−R

Likewise, we multiply the refraction
contribution by T.

Viewing the reflection directly results in a faint
reflection. Note that the reflecting object has
transparency and depth; the second reflection is
due to rays bouncing off the back wall.

Viewing the wall at an angle results in a
clearer reflection.

Note that while a material must have a
refractive index for Fresnel reflection to work, it
does not actually need to be transparent. If the
material has no refractive properties defined, we
default back to the original reflection by setting R
to 1. The effects of Fresnel reflection are most
noticeable with materials that have a slightly
higher index of refraction than air. Materials with
higher refractive indices tend to overwhelm the
reflection, and reflections are then only visible at
extreme angles.

Refraction

When light hits a material with a different
refractive index, its phase velocity changes,
giving off the appearance of bending. Snell’s law
describes the phenomenon as the relationship
between angle of incidence and refractive index.

sinθ1

sinθ2

=
n2

n1

Where θ1 is the angle of incidence, and θ2
is the outgoing angle of incidence. n1 is the
refractive index of the material the ray is leaving,
and n2 is the index of the material the ray is
entering.

The directional vector of the refracting ray
can be calculated with:

v refract=
n1

n2

l+(
n1

n2

cosθ1−cosθ2)n

Where l is the normalized directional
vector of the incoming ray, and n is the normal
vector of the surface the ray hits. cosθ1 and cosθ2
can be found by:

cosθ1=−n⋅l

cosθ2=√1−(
n1

n2

)

2

(1−(cosθ1)
2
)

Note that cosθ1 must always be positive,
multiplying by -1 if necessary. If the radicand
under the equation for cosθ2 is negative, it
indicates total internal refraction. In this case, the
ray reflects off the object completely, which can
be calculated with:

v reflect=l+(2cosθ2)n

A transparent cube refracts light with a pink
sphere behind the cube.

Dispersion

Refraction is wavelength dependent, so
the angle of refraction depends on the
wavelength. Since white light is composed of
multiple frequencies of light, it appears to split
into different colors as each wavelength of light
refracts in their own directions.

In our implementation, we use multiple
dispersion samples to calculate dispersion colors.

When a not-yet-dispersed ray strikes a
transparent object, we split the ray into multiple

monochromatic rays. We partition the range of
wavelengths into sections depending on the
number of dispersion samples we use, and choose
a random wavelength from each section.

We used Cauchy’s equation to
approximate the index of refraction as a function
of wavelength.

n(λ)=B+
C

λ2

Where n is the index, λ is the wavelength,
and B and C are coefficients determined by the
type of material. Cauchy’s equation just serves as
an approximation, and is only accurate in the
visible spectrum of light. B while technically
incorrect, Cauchy’s equation is a good enough
model for computer graphics dealing with visible
light.

After shooting out multiple dispersion
rays, we convert wavelength into an RGB color
scheme, and average the colors together.

A light source far above the sphere is visible
through the sphere, which has an extremely
high refractive index.

Photon Mapping

For the most part, refraction and
dispersion works the same for photon mapping as
it did for ray tracing.

Remember that total internal reflection
occurring inside in object should not be visible,
so do not add a photon to the kd-tree when a
photons reflects off the inside of a refractive

object.

A sphere with visible internal reflections
For ray tracing dispersion effects, we had

to jitter the wavelengths and send out multiple
dispersion rays of different wavelengths. For
photon mapping, just sending a single photon of a
random wavelength should be fine. This is
because when gathering the indirect illumination
when ray tracing with photons, the function
gathers the nearest photons. As long as a large
enough number of photons are collected, the
color returned should be accurate.

For example, if a red, green, and blue
photons are shot towards the same point,
gathering the indirect illumination of that point
should return white. The way we chose RGB
values from wavelengths is an approximation, so
sometimes when an area should be white, the
color is slightly pinkish. But for the most part, the
colors are accurate enough.

Transparent spheres with caustics

When not enough photons are collected
when calculating indirect illumination, the colors
may appear splotchy. This can be fixed by
increasing the number of photons collected, or
dramatically increasing the number of photons
fired. The accuracy of photon mapping depends
on the parameters set, and the constants chosen
for material properties.

Incomplete render of prism caustics

Dispersion effects appear splotchy due to low number
of photons collected

Participating Media

The problem that arises with volumetric
photon mapping is how to determine if a photon
interacts with a participating media. Of particular
importance is the density of the media, as a more
tightly packed cluster should lead to a higher
amount of interaction. Given a photon traveling
in direction r from origin point o, we want to be
able to find a plausible value d such that the
photon interacts with the participating media at o
+ dr. This can be accomplished by using the
extinction coefficient of the media, which is
essentially a parameter that describes how much
light a substance absorbs. With the extinction
coefficient σt , and a random variable χ between
zero and one, such a value d can be calculated as:

d=
−log(χ)

σt

This works perfectly for homogenates media, and
can be extended to also support heterogeneous
media by varying the extinction coefficient per
location in the media, so that light is absorbed
more in certain places than others [Wojciech
2008]. This kind of approximation is less
accurate, but often produces visually acceptable
renderings.

Next, once a point of interaction for the
photon is determined, the photon is stored in the
volumetric photon map, and then either absorbed
or scattered from the point. As is usual for typical
photon mapping, this interaction is chosen by
various probabilities of the media. In this case
the probability of the photon being absorbed is
the ration of σa to σt where σa is the absorption
coefficient of the substance. This makes the

probability of the photon being scattered 1-pra,
and the scattering coefficient σs=σt-σa . Given
these probabilities, the type of interaction for a
photon is chosen by Russian roulette, and either
tracing photon either of the photon terminates, or
a new scattering direction is computed depending
on the media, and the photon continues to be
traced through the scene.

For a photon traveling through a medium,
it will travel in it’s direction until one of two
things happens: it interacts with the participating
media, or it hits a surface. In order to
accommodate for both of these options, a ray is
cast from the photon at position o in the direction
it is traveling, r, to determine what surface that it
would hit if it didn’t interact with the
participating media. This produces a value t,
such that the surface the ray hit is at x = o + tr.
Then, a value for d of where the photon would
interact with the media is calculated from the
above formula. If d < t, then the photon interacts
with the media at position x = o + dr, otherwise,
it interacts with the surface at x = o + tr.

If a photon interacts with a surface, it is
stored in the surface photon map as normal, but if
it interacts with the participating media, it is
stored in the volumetric photon map. There are a
few reasons why these maps are kept separate.
First, keeping them separate means that they can
be calculated independently at different densities.
If more detail is needed for the volumetric map
than the surface map or vice versa, photons can
be traced through the scene multiple times with
different amounts in order to populate the maps
with the desired density. Typically, however, the
volume and surface photon maps are constructed
at the same time. Second, when rendering the
scene, it is incorrect to use the volume photons to
light on a surface, or to use surface photons to
render light in the volume. Finally, it leaves the
surface photon map less cluttered, so those
lookups are much more efficient [Jensen 1998].

Estimating radiance at a particular point in
the volume using these photon maps can be
viewed as a simple extension to the surface
radiance estimation [Jensen 2004]]. The estimate
at a point x in the direction w is the integral
around all incoming directions of the radiance
incoming radiance in that direction multiplied by
the bi-directional reflectance distribution function
at that point between those directions:

Li(x , w⃗)=∫
Ω

f (x , w⃗ ’ , w⃗)L(x , w⃗ ’)dw

This particular estimate is infeasible to use to
precisely calculate the radiance, but can be
estimated using the constructed photon map. By
using the derivation of Jensen et al., this exact
calculation can be reduced to the approximation:

Li(x , w⃗)=
1

σ s(x)
∑

1

n

f (x , w⃗ p)
ΔΦp(x , w⃗ ' p)

4
3

π r3

Here, σs(x) is the scattering coefficient of the
medium at x, or $σs(x) =σt(x) – σa(x), Φs is the in
scattered radiance of the photon p stored in the
photon map, and r is the radius of the smallest
sphere centered at x that surrounds all n closest
photons [Wojciech 2008]. The primary difference
between the surface radiance estimate and this is
that the volume estimate uses photons in three
dimensions, so the radiance estimate is divided by
the volume of the enclosing sphere, rather than
the area of the enclosing disc.

In order to render the scene, this radiance
estimate must be applied along the eye direction
to accumulate the surface radiance estimation as
well as the contribution of radiance from the
media [Jensen 2004]. This can be done using a
simple ray marching algorithm along the ray from
the eye point to the point where the ray intersects
a surface. The idea behind this ray marching
algorithm is to evaluate the radiance estimation of
the media along evenly spaced points along the
ray, as in figure X. At each discrete point along
the ray, the volume estimated radiance is
calculated using the above formula. Each of
these estimates is combined and then added to the
surface radiance estimate and color by:

L(x , w⃗)≈L(xs , w⃗)+∑
t=0

S−1

σ s(x t)

where L(xs , w⃗) is the radiance approximation
at the surface point, and each radiance term in
the sum are the volumetric radiance estimates
taken along the ray [Jensen 1998].

Rainbows

Descartes

Four hundred years ago, Rene Descartes
produced the first detailed study of rainbows
[Casleman]. Descartes figured out rainbows are
caused by the bunching of rays after they enter a
water droplet reflect some number of times then
exit the sphere. The primary bow is caused by
one reflection within the sphere. For any ray that

enters the water droplet with an angle of i as
shown:

T
he total deflection is therefore:

D=4r−2i

Then by using Snell's law:

sin(i)=nsin (r)

r=arcsin (
sin(i)

n
)

D=4arcin(
sin(i)

n
)−2 i

The rainbow is caused by the bunching up of rays
to form a caustic ray. This can be found by
finding the minima of D as a function of i.
Therefore the angle I of the caustic ray is:

i=arccos(√ n2
−1
3

)

The angle of deflection can then be found by
plugging this value back into the equation for D.

This results in the finding of the angle of
the caustic ray, but does not directly explain why
a rainbow shows the spectrum of color. This is
due to the fact that different wavelengths have
slightly different indexes of refraction. This
causes the angle of the caustic ray to be slightly
different causing the rainbow to show the entire
spectrum.

This also only accounts for the primary
bow, because the angle was only calculated for
one reflection. The formulas only need to be
slightly altered to find the caustic ray after two
reflection, resulting in the secondary bow. This
process can be continued for higher order bows;

however, they are almost never visible, because
they are near the sun, and have very little energy.

In order to use this to render an actual
rainbow using Descartes equations requires a
little more work. The equations work with light
coming from the sun, whereas ray tracing works
with rays coming from the camera. In order to
reverse this process there are two options. The
first is to compute the wavelength based on the
angle between the incoming direction and the
direction to the sun.

Secondary bow, made by solving for
wavelength

The image above shows a rendering using
this method. By using Descartes equations, it is
possible to solve for n given D, by using the
following equation:

n=
1
2

√(2(k+1)
2
−2)cos (D)+2(k+1)

2
+2

 ,where k is indicates how many reflections.

Then by using the approximation:

n=B+
C

λ
2

it is possible to find the wavelength of the caustic
ray, where B and C are constants based on the
material.

The other method that makes use of
Descartes equations is to samples across the
spectrum, and for each of these wavelengths
compare the actual angle of deflection to the
caustic angle of deflection. Then take a
contribution of the color of the difference is

file:///home/gary/Documents/Work/ComputerGraphics/final_project/

within some bound. The color should also be
weighted that a difference of zero corresponds to
one, and as the difference increases in magnitude
the weight goes to zero.

This method introduces noise and
blending, which causes the rainbow to appear
more accurate. In an actual rainbow, these
appearances are caused by diffraction and
polarization, but this added noise recreates similar
visual results as shown below:

Sampling with Descartes

Airy

Descartes work was before light was well
understood. After Fresnel came up with his wave
theory, George Airy applied it to spheres. His
integral explained that interference caused the
supernumerary bands. When the wave of light
leaves the sphere the light is in an S shaped front,
which intersects itself, which causes interference.
Airy solved this problem with the integral of

A (m)=∫
−∞

∞

cos(π
2
(s3

−ms))ds

where m is proportional to the angle from the
caustic ray.

This integral has no analytical solution,
but can be approximated by a Taylor series. This
was first performed by De Morgan, who came up
with the following approximation:

A(x)=A(0)(1−
1
3

x3

3!
+

1⋅4
32

x6

6 !
−…)

+ A ' (0)(x−
2
3

x4

4 !
+

2⋅5
32

x7

7 !
−…)

where ,

A(0)=
1

3
1
3∗Γ(

1
3
)

A '(0)=
1

3
2
3∗Γ(

2
3
)

This approximation is only good for values
between -4 and 5. Anything outside these bounds
will have great error from the real value of the
integral.

To render a rainbow using they Airy
integral, a truncated version of De Morgan's
approximation must be used. Then Descartes
equations must be used to find the deflection
angle, and the difference between this and the
viewing angle must be used in De Morgan's
approximation to find the weight. The proportion
to make a realistic rainbow as not found, but a
proportion which rendered the desired affect,
supernumerary bows, was used. As shown below,
this was achieved:

Supernumerary Bows using the De Morgan
Approximation

The frequency and amplitude of these bows is too
high. Also the artifact on the right is caused by
error in the De Morgan approximation. The
render does show that as the bows go away form
the primary bow, they do start to blend together
and become less intense. To render the bows
more accurately, the proportion from the
difference to the value passed to the De Morgan
approximation must be tinkered with.

Lorenz-Mie

Airy's integral did not solve the problem
to light scattering through a sphere, it was an
approximation itself. The solution to light
scattering in a sphere was first published by Mie
in 1908. His solution took into account the full
behavior of light.

To render a rainbow using this solution, I
made use of existing code which solved the
equations, because the Physics and Mathematics
behind the solution were too in depth for my
knowledge. The implementation I used was
based on papers by Hong Xue[2004] and
Wiscombe[1980].

In order to render anything using these
calculations in any reasonable amount of time,
the data must be precomputed on lattice points.
Then during rendering the data can be
interpolated from these lattice points to find the
values at intermediate values.

The calculations are still intensive and
create large data files. These files can then be
read into the renderer and then lookups can be
performed quickly. Unfortunately, I was unable to
make a good render of a rainbow from the data,
because the Mie solution deals with light
intensity. Any rainbow I was able to make was
too spotty and dark, or had too much background
noise.

Much of the interesting data, such as
supernumerary bows, were hard to differentiate
from most of the data. The render below mapped
values from the max value to the average value
from red to black, and the average value to the
minimum value from black to blue for one
wavelength on a logarithmic scale:

Render of range of values using Mie solution

The small variations have a clear pattern, but I
was not able to separate them to render a rainbow.
Also, these values oscillate between the average
and below average. The maximum value occurs
at theta equal to zero, not in the rainbow.

Results

Gems

Fresnel reflections and refractions look
accurate for both ray tracing and photon mapping.

With dispersion, the images contained lots
of noise during ray tracing, which could be
remedied by either increasing sample sizes or
using anti-aliasing, both of which would
dramatically decrease performance.

With dispersion, colors might seem off on
occasion due to the random nature of both the ray
trace and the photon mapping. This could be
fixed with a more accurate conversion of
wavelength to RGB value.

Renderings using photon mapping cause a
huge hit in performance, and may take hours to
render depending on the scene, without anti-
aliasing or soft shadows.

Final render of a diamond

Ray marching through participating media.
Volume radiance estimates are computed at
discrete evenly spaced points along the ray to
approximate the radiance along that ray.
(Figure taken from [4]).

Participating Media

Running this algorithm on a number of
test scenes show promising results with a few
obvious flaws. Figures X-Y show scenes that
render a) only primitives, b) only the radiance
contribution from participating media, and c) the
final image. The radiance contribution from
participating media shows almost exactly what
would be expected: a distribution of light
throughout the scene as if there is some dust-like
substance in the room clustered closer to light
sources. In particular, in the cornell box scenes,
even the diffuse light reflected off of the walls is
visible in the media, though it gets lost in the final
render.

While the results look promising, there are
noticeable problems with them, namely the noise
in the render. Using this algorithm, isolated

bright spots are common, especially when a ray
shot through a pixel comes in close contact to a
surface at a grazing angle. This could have
resulted for a few reasons. Using ray marching
chooses evenly spaced points to gather light from,
but these points aren’t necessarily analogous
between adjacent pixel rays. This can lead to one
or two points along a ray that “get lucky” and hit
a dense pocket of photons, where neighboring
pixels might be too far from these (in the ray
direction) to be quite as bright. Alternatively, any
number of bugs could have been introduced,
including incorrect calculation of photon energy
at an intersection or incorrect gathering of
photons.

In addition to these bright spots, what
appear to be dark “artifacts” also appear in the
images. These may be caused by similar
problems to the bright spots, but appear to be less
isolated. Instead, these dark spots may in fact be
caused by the randomness of photon mapping,
where an area might be darker simply because not
enough of the photons happened to get stored
there, and shooting more photons in the scene
may help to address this problem.

In terms of run time, the results are much
less exciting. Even with only 10,000 photons shot
into the scene, 100 photons gathered at each
radiance estimate, and only 5 samples taken in the
ray marching algorithm, even the simple scene in
figure X took 64 minutes and 36 seconds to
render. This is due to the nature of ray tracing
being a very computationally intensive algorithm
in addition to ray marching adding an additional
level of complexity. Gathering the n nearest
photons to a point is at least O(n) for a very good
gathering algorithm. Taking m samples in the ray
marching algorithm means that for each ray, it
takes O((m+1)n) time to approximate the
radiance (m for the points along the ray, plus the
point on the surface). Combining this with the
fact that there is one ray per pixel, with p pixels it
takes O(cp(m+1)n) time to compute, where c is
an additional coefficient based on how much
other work is done per ray. Unsurprisingly, this
complex of an algorithm takes enormous amounts
of time to compute.

Simple scene with Cornell
Box and directed light
overhead. Rendered tracing
10,000 photons, using 5
sample points for the ray
marching algorithm, and an
extinction coefficient of 0.5.
The base geometry to be
rendered.

The contributing radiance
from the participating media.

The final render.

Rainbows

Rainbows are a visually stunning
phenomena which are still not entirely

understood. The various theories about rainbows
approximate their behavior and are thus unable to
render accurate rainbows. Each successive theory
also requires more computation in order to render
a quality rainbow as well.

The first method of that used Descartes's
theory, was by far the quickest, because it did not
require sampling. However, the results were not
good. This is partially due to the complex nature,
but also due to the method of converting between
wavelength and RGB I implemented. My
implementation broke the wavelengths into linear
gradients which when used with jittered sampling
was alright, but the first method of using the
Descartes equations accentuated this problem.

The second method gave quite good
results, and was decently fast. Due to the
sampling the actually rainbow was smooth, and
faded from the background. The only flaw was
that it was missing some of the smaller, yet more
interesting phenomena. This is because Descartes
did not have knowledge of all the characteristics
of light at the time when he formulated these
equations. For a small budget this method can
produce decent results.

By using De Morgan's approximation to
the Airy Integral, it is possible to render much
more accurate rainbows. However, it does
require some tinkering with constants and a
considerable amount of time. The method also
has some error which could cause problems as
well. De Morgan's approximation can only
approximation the integral between -4 and 5.
Also the infinite series in De Morgan's
approximation must be truncated. By using too
few terms, the number of supernumerary bows
decreases, and each bow begins to blend too
much creating a white band in the center, as
shown below:

Too few terms used in De Morgan
Approximation

Lorenz-Mie theory does provide a very
accurate way to render rainbows, but it does take
some work to take the initial data from the
solution and make it usable for Graphics.
However, it is extremely to calculate, making it
impossible to compute while rendering. For this
reason it is necessary to precompute the values
then read them in during rendering. This means
that for a good result, a large amount of time must
be spent precomputing the results for one set of
parameters. It took me on my Lenovo 45 minutes
to compute 100 wavelengths for angles between 0
and π using a delta .0001. It later took me 5
hours to compute 1000 wavelengths for the same
angles.

Conclusion

Gems

We added Fresnel reflection, refraction,
and dispersion for more accurate lighting effects
when rendering transparent objects. Many
approximations were used, which could be a
possible path for improvement. The biggest
drawback of these lighting effects is the extra
computational costs, especially with photon
mapping. Our images also contain lots of noise,
which could be remedied by either increasing
sample sizes or using anti-aliasing, both of which
would dramatically decrease performance.

Participating Media

Obviously, this algorithm cannot be used
in any sort of real time application, but when
accurate renderings are desired, this can produce
high quality images. In terms of speed, there are
a number of potential optimizations, the first of
which is parallelization. Since each ray need only
access the photon map and geometry, and has no
need for communicating with other rays, simply
running each ray’s calculation on a different
thread could result in a much faster rendering
time. Even more ideal than CPU parallelization
would be massive GPU parallelization, sharing
the photon map between hundreds of GPU
threads and running each ray on a thread would
result in dramatic speedup. Additionally, the ray
marching algorithm could be improved by doing
adaptive ray marching, which starts with a large
time step, and recursively halves the time step if
the radiance differs too much in between
measurements. In this way, a smaller timestep
could be used in most situations, which would
improve render times dramatically.

Rainbows

Rainbows are a complicated phenomena,
which are complicated to render. The best
possible solution is to simulated a single water
droplet and use that data. However, in lieu of this
technique it is possible to render rainbows by
making use of various theories in optical physics.
Each method has a trade off between quality and
computing time. The quality comes by way of
what phenomena can be rendered, which all
require more time. Although each successive
phenomena alters the overall rainbow by a small
amount, its inclusion does enhance the overall
rainbow, because it more accurately mimics a real
rainbow.

Future Work

Gems

Speeding up up the rendering process is
the biggest issue to work on. Something that
would have been cool to add given more time was
volume absorption, to more accurately simulate
color properties of crystal structures would have
made for a more brilliant diamond render. Using

different gem models would have also been great,
as the properties of gems vary greatly with their
shape. Getting the normal diamond model
rendering was extremely difficult due to lack of
triangle faces. Something else that should have
been added was better support for rendering
gems, participating media, and rainbows at the
same time. It is possible, but many bugs exist in
the code preventing the best renderings and
performance issue when trying to render all at
once.

Participating Media

As mentioned before, speeding up the
algorithms by parallelization and using adaptive
ray marching would be highly desirable additions.
It would also be very interesting to vary the
extinction coefficient by position to properly
model heterogeneous media. This could either be
a static scene with randomly generated
heterogeneous media, or a smoke simulation
could be used in conjunction with these
algorithms to create realistic renders of the
simulated substance. Produced solutions would
also benefit from some method to more evenly
distribute photons in case of low photon counts,
to avoid “splotchy” artifacts in the final render.

Rainbows

Improving the Airy and Lorenz-Mie
renders would allow for a better comparison
between each of the methods. It would also
possibly allow for direct comparisons and the
generation of images that show exactly how each
successive theory changes the render of the
rainbow.

Implementing the algorithm in the Related
Works section would allow for more accurate
renders.

Bibliography
• Hong Du, "Mie-Scattering Calculation,"

Appl. Opt. 43, 1951-1956 (2004)
http://www.opticsinfobase.org/ao/abstract.
cfm?URI=ao-43-9-1951

• Casselman, Bill. "Feature Column from
the AMS."American Mathematical
Society. N.p., n.d. Web. 2 May 2013.
<http://www.ams.org/samplings/feature-
column/fcarc-rainbows>

• Wiscombe, W.J.. "Improved Mie
Scattering Algorithms." Applied Optics
19, no. 9 (1980): 1505-1509.

• Sadeghi, Iman, Adolfo Munoz, Philip
Laven, Wojciech Jarosz, Francisco Seron,
Diego Gutierrez, and Henrik Wann
Jensen. "Physically-Based Simulations of
Rainbows." ACM Transactions on
Graphics 31 (2012).
http://graphics.ucsd.edu/~henrik/papers/p
hysically_based_simulation_of_rainbows.
pdf (accessed April 29, 2013).

• [1] Jensen, Henrik Wann. "A practical
guide to global illumination using ray
tracing and photon mapping." In ACM
SIGGRAPH 2004 Course Notes, p. 20.
ACM, 2004.

• Jensen, Henrik Wann, Stephen R.
Marschner, Marc Levoy, and Pat
Hanrahan. "A practical model for
subsurface light transport." In Proceedings
of the 28th annual conference on
Computer graphics and interactive
techniques, pp. 511-518. ACM, 2001.

• Jensen, Henrik Wann, and Per H.
Christensen. "Efficient simulation of light
transport in scences with participating
media using photon maps." InProceedings
of the 25th annual conference on
Computer graphics and interactive
techniques, pp. 311-320. ACM, 1998.

• Wojciech Jarosz. Efficient Monte Carlo
Methods for Light Transport in Scattering
Media. Ph.D. dissertation, UC San Diego,
September 2008.

• Steven Collins. “Rendering Crystal
Glass,” Proc. of the 2nd Irish Workshop
on Graphics, 1994.

• Yinlong Sun, F. David Fracchia, Mark S.
Drew. "Rendering Diamonds,"
Proceedings of the 11th Western
Computer Graphics Symposium, 2000.

http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-9-1951
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-9-1951
http://www.ams.org/samplings/feature-column/fcarc-rainbows
http://www.ams.org/samplings/feature-column/fcarc-rainbows

	Enhanced Ray Tracing
	Participating Media by Brian Stauffer
	Rainbows by Max Curran
	Gems by Gary Lu
	Motivation
	Related Work
	Participating Media
	Rainbows

	Algorithms
	Fresnel Reflection
	Refraction
	Dispersion
	Photon Mapping
	Participating Media
	Rainbows
	Descartes
	Airy
	Lorenz-Mie

	Results
	Gems
	Participating Media
	Rainbows

	Conclusion
	Gems
	Participating Media
	Rainbows

	Future Work
	Gems
	Participating Media
	Rainbows

	Bibliography

