
Standalone Distributed Rendering For Supercomputers

William Tobin
tobinw2@rpi.edu

Daniel Ibanez
ibaned@rpi.edu

May 2, 2013

Abstract

We present a method for rendering large distributed
meshes on large distributed architectures that lack
traditional graphics rendering capabilites and hard-
ware. This method renders each distributed portion
of the mesh independently on an individual process
into a depth-buffer and image-buffer. After individ-
ual renderings are taken, the Message Passing Inter-
face is used to merge the individual rendering buffers
into a final frame. We discuss our implementation on
the BlueGene/Q architecture and the performance of
this implementation, which is fast enough for large-
scale simulation monitoring at most resolutions and
at moderate- and low-resolutions is fast enough that
real-time interaction may be possible.

1 Introduction

Recent state-of-the art supercomputers such as the
IBM Blue Gene/Q, or BGQ, are built using many
tightly coupled processors. Designed for high-
performance computing and simulation, these ma-
chines do not include graphics cards and rarely install
software support for rendering. Traditionally, any
graphical output from simulations running on the su-
percomputer is performed by a separate visualization
cluster, which consists of more loosely coupled pro-
cessors with graphics hardware and related software
support. The utility gained by visualization capabili-
ties motivates the implementation of an efficient ren-
dering technique in order to prevent introduction of
unnecessary computation delays into scientific HPC
applications. This report explores the possibility of

rendering using the BGQ hardware itself. We focus
on implementing the traditional graphics pipeline for
unstructured surface and volume meshes, which are
frequently used in scientific computation as well as
graphical animation applications. The method we
present is capable of rendering any mesh that will fit
on the BGQ’s RAM with a runtime logarithmic in
the number processors used and proportional to the
mesh surface per processor. We achieve this by ren-
dering partial frames on each processor and merging
the frames in a binary tree communication pattern to
form a final frame. This method comes close to inter-
active speeds for some common video resolutions and
mesh sizes. We implement this method as a C library
and programs, making use of the SDL and libpng [1]
libraries to output the resulting images. The render-
ing library is small enough to integrate into existing
scientific applications, enabling in-situ visualization
at a more closely coupled level than before. This is
further motivated by the lack of support for simulta-
neous program execution or dynamic library linking
on many supercomputers architectures. The system
presented would enable visual interaction with scien-
tific applications, and the merging algorithm is gen-
eral enough to support purely graphical applications.

2 Related Work

The standard approach to massively parallel visual-
ization in HPC applications involves the use of vari-
ous in-situ data extraction techniques combined with
inter-cluster data transfer to an independent visual-
ization system.

The ParaView Coprocessing Library [2] is used

1



in many HPC simulations as a data visualization
tool. The library allows for the construction of
ṕipelinesẃhich send visualization data to a coprocess-
esing machine cluster (such as the cluster installed at
the CCNI alongside the Blue Gene/Q) or to a client
machine where the data is used to produce visual
renderings representing the state of the simulation
on the supercomputer. The data is acquired through
use of adaptor code so that ParaView is not required
to work with data formats internal to a particular
simulation code.

ParaView has been coupled with several simula-
tion codes including the PHASTA simulation code
through work conducted at SCOREC.

Ellsworth et al. [3] developed a method sharing
commonalities with the ParaView approach initially
intended for visualization of data from a massively
parallel forecast model implemented and executed on
the NASA Ames “Columbia” supercomputer. Their
approach involves the simulation code allocating and
copying simulation data to areas of shared memory
on the supercomputer. This data is than accessed by
a separate program executing on the same nodes and
sent across an Infiniband network to a separate clus-
ter, similar to the ParaView approach. This cluster
breaks the single data stream received from the simu-
lation system into several separate streams which will
all eventually produce separate visualizations. This
approach allows simultaneous visualization of multi-
ple pieces of data simultaneously. Each data stream
is sent via standard TCP protocol to a visualization
system which renders the stream and encodes it using
the MPEG video format before writing it to shared
network storage. This filesystem is accessed via SSH
by display cluster nodes, which stream the individual
video files created by each data stream to individual
displays.

Tu et al. [4] [5] developed a full simulation work-
flow including a visualization system for volume ren-
dering of vector fields. Their system uses a spatial
decomposition of the simulated domain (using an oc-
tree) to distribute rendering responsibilities among
the nodes of the system. They use this octree struc-
ture to implement a ray-tracing system whereby each
sub-volume is rendered independently. They make
use of the SLIC [6] method for image compositing

which involves direct sends from nodes holding ren-
derings of the subvolumes directly to the node respon-
sible for image composition. This parallel rendering
method was described in [7] .

3 Graphics Pipeline

Our implementation of a graphics pipeline consists
of three stages. The highest level constructs a flex-
ible mesh data structure and renders it by passing
primitive shapes to the 3D viewing system. The 3D
viewing system performs transformations, clipping,
and perspective to obtain image-space vertex coordi-
nates for each primitive, and then hands these over
to the 2D raster system. The image-space primitives
are rasterized into a depth-buffered image, which is
either immediately output or given to the merging
algorithm in section 4.

We implemented a 2D raster system which can ren-
der points, lines, and triangles, resulting in software
arrays representing an image and its corresponding
per-pixel depth buffer. All color values are stored
in a 24-bit RGB format. Image-space primitives are
encoded as vectors, where each vector has integer X
and Y coordinates, a double-precision floating-point
depth, or Z, value, and a color value. The image

structure stores the color values for pixels, and has
support for I/O either on a window using SDL or as a
PNG file using libpng. The drawing structure stores
an image and a depth buffer, which are initialized to a
background color and infinite depth distances before
rendering.

Drawing a point is straightforward: If the depth
value of the point is closer to the camera than the
current dept buffer value at that pixel, assign the
point’s depth and color values to the pixel. To draw
a line, we use Bresenham’s algorithm to obtain a se-
ries of points given the endpoint vertices of a line,
and draw each point. Intermediate Z and color val-
ues are interpolated linearly between the endpoints
of the line. To draw a triangle, we invoke Bresen-
ham’s algorithm on each of the edges of the triangle.
From the resulting vertices we can find the first and
last points of the triangle in each row of the image on
which the triangle appears. Each row of the triangle

2



is then drawn as a line based on these first and last
points.

Our general 3D viewing algorithm for primitives is
as follows:

1. Transform the primitive into camera space

2. If the primitive is a triangle, perform flat shading
and backface culling

3. Clip the primitive using an infinite pyramid of
clipping planes in camera space

4. Transform the primitive into screen space using
a perspective transformation

5. Rasterize the primitive in 2D screen space

In the 3D system, primitives are stored as a set of
double-precision position vectors for vertices and a
single color value.

The transformation from world space into camera
space is stored as an affine structure, which is a
3×3 rotation matrix and a translation vector instead
of the traditional 4 × 4 matrix. Flat shading and
backface culling for triangles both make use of the
dot product between the triangle normal and the unit
vector from the eye point to the triangle’s centroid. A
positive dot product is used as a scaling factor for the
color’s RGB values, and a negative product culls the
triangle. By clipping in camera space as opposed to
perspective space, we avoid many of the issues which
motivated the use of a near and far plane to create a
viewing frustrum. As such, we only use the remaining
4 planes to clip what will not appear in screen space.

Clipping for lines and points is more or less trivial,
but triangle clipping requires handling several cases.
The algorithm for clipping a triangle using one plane
outputs zero, one, or two triangles depending on the
combination of points inside or outside the half-space.
Figure 1 illustrates the non-trivial cases when the
plane intersects two edges of the triangle. The red
sub-triangle is output if the half space is above the
dotted line representing the plane, otherwise the two
green triangles are output.

The triangle viewing function recursively applies
single-plane clipping to the resulting triangles until
all 4 planes have been considered. This creates zero

Figure 1: Triangle clipping cases

to 16 output triangles for the next step, although
typically the number is two or less. Currently the
clipping planes provide a viewing angle of 90◦, which
is to say that the left and right planes are orthogonal,
as are the top and bottom planes.

The clipped primitives may be safely scaled by
their Z value relative to screen diameter and then ras-
terized in screen space. The screen diameter is the
maximum screen dimension, either width or height.
This ensures that the bi-unit square in which all per-
spective XY values lie is scaled to fit around the
screen image.

In addition, we have implemented an intuitive user
interface for manipulating the camera to object rela-
tionship using the mouse. We call it a “globe” inter-
face because it is based on spinning and tilting the
object like a globe before translating it to its final
position. The affine transformation for the globe is
obtained by combining the transformations for spin-
ning, tilting, and translation given the spin and tilt
angles and translation vector. Left clicking and drag-
ging on the screen in the X and Y directions manip-
ulates the spin and tilt angles, respectively. Middle
clicking and dragging on the screen adjusts the X
and Y values of the translation vector, while right
clicking and dragging will convert Y mouse motion
into Z translation, all relative to the current distance
from the camera to the object space origin. Distance-
relative zooming and panning is quite useful for han-
dling objects of widely varying scales elegantly, and
does not require knowledge of the object size.

Currently only tetrahedral volume meshes and tri-
angular surface meshes are supported in by the mesh
rendering system.

The flat shading mesh visualization algorithm pro-
ceeds by iterating over all faces in the local partition

3



of the volumetric mesh. If the face has two adjacent
mesh region volumes then it is an interior face and is
unimportant for a flat-shaded render. Any face deter-
mined to be on the boundary of the volume mesh has
the three vertices adjacent to it retrieved and passed
as an array to the triangle rendering function, which
takes care of backface culling, clipping, and further
rendering functions.

For wireframe visualization, all edges in the mesh
are simply iterated over, their adjacent vertices re-
trieved, and passed on to the rendering system.

There is one known issue with this implementation
of mesh rendering, which is that triangles sharing an
edge will result in Z-fighting along that edge dur-
ing rendering. This is due to the fact that pixels on
this edge do not sample exactly the line between the
points, and the distance from the line changes their
depth values according to the surface orientation of
the triangle. This issue is the origin of artifacts in
the mesh renderings to be discussed in the Results
Section.

4 Image Merging

Parallel merging of the frames rendered on the indi-
vidual processes was conducted using the MPI mes-
sage passing system which is the de-facto standard in
HPC parallel applications such as those implemented
on our BlueGene/Q target architecture. MPI pro-
vides support for general message passing patterns
and as such construction of a general reduction al-
gorithm using non-blocking sends and receives on
the rendering nodes was considered. This approach
would have the benefit of allowing processes that
complete the render operation to move on to compu-
tational phases immediately following a non-blocking
send. This operation would be conducted hierarchi-
cally in a tree-based communication pattern.

MPI has a blocking reduction operation already
present which can be used to perform built-in reduc-
tion operations on standard MPI datatypes (such as
finding the maximum value of a set of distributed in-
tegers). The communication pattern for this built-in
reduce operator is very similar to our original con-
ceptual parallel merge communication, however it is

collective and blocking so all processes must call the
operation prior to any being released.

MPI has provided the ability to define custom
datatypes since the first standard . These datatypes
can be used in all standard MPI communications rou-
tines including the asynchronous sends and receives
which would have been used in the implementation
based off of our initial concept. However, MPI also
provides the ability to define custom reduction op-
erations for the MPI Reduce function (also since the
initial standard). This provided us with the possi-
bility of a much cleaner parallel frame merge opera-
tion by defining a custom MPI Datatype and MPI Op

and using the MPI Reduce functionality which likely
provides a much cleaner and more efficient reduction
communication pattern than we would be able to im-
plement.

The parallel frame reduction / merge process takes
place as follows: the color buffer, depth buffer, and
frame dimensions are extracted and placed into a
contiguous memory buffer. A new MPI Datatype is
created which is simply a series of contiguous bytes
equivalent to the size of the memory buffer. A new
MPI Op is then created, which simply registers a pre-
written reduction function with the correct function
signature as the reduction operation. Finally the
MPI Reduce call is made, which takes care of hier-
archically merging the individual frames. This re-
duction operation will be called dlg(n)e times on the
root process (where the final frame is collected) in
order to compose the final rendered frame.

The reduction operation takes two data buffers,
the number of data elements being merged, and a
pointer to the MPI Datatype describing the type in
the buffers. Offsets to the initial color buffer and
depth buffer locations are then calculated. From
there the frame dimensions are used to limit the iter-
ation over the two image buffers in each data buffer,
at each point determining which depth buffer has a
lesser value, then (possibly) overwriting the result
image and depth buffers with those values from the
‘closer‘ buffer.

Reducing the data used in a merge may be pos-
sible by simply limiting the data sent by each node
to the rectangular subsection of the frame in which
the local part of the parallel mesh was rendered, but

4



our results for the initial implementation do not sug-
gest this is immediately necessary. This does however
present a possible area for future work in the parallel
reduction phase.

The tradeoff in our approach of course is the re-
striction that the MPI Reduce operation is a collective
and blocking. In the upcoming MPI-3 standard non-
blocking collective calls will likely be added that may
be of use by allowing processes to immediately con-
tinue with analysis procedures after processing any
intermediate merges assigned on the local process .
The alternative is essentially an ad-hoc implemen-
tation of this functionality using the non-blocking
point-to-point capabilities of MPI, which would likely
result in sub-optimal frame merge times.

5 Results

To test the raster and viewing code, we can begin by
rendering primitives In several different cases. Figure
2 shows a combination of several different primitive
cases rasterized in 2D:

1. A point and some overlapping lines

2. An axis-aligned blue triangle

3. A green triangle with zero width

4. A color-interpolated triangle intersecting the
blue triangle

Figure 2: A set of primitive raster demonstrations

During implementation a bug was introduced caus-
ing only a single of the RGB values to be used in the
color interpolation function, this produced the un-
usual color interpolation results shown in Figure 3

Figure 3: Bad color interpolation on triangles

This case is representative of much of the testing
that was done on the raster system. These initial re-
sults allowed us to move into implementation of the
3D viewing system. Early tests using geometric prim-
itives ironed out simple bugs in the implementation.
Results become interesting in the context of triangle
clipping, which is a complex operation and is key to
our rendering implementation. Figure 4 highlights
the clipping algorithm at work on a triangle by ren-
dering outlines of sub-triangles. The triangle is first
clipped by the bottom plane of the view frustum, b
reaking it in two triangles, and then clipped by the
right frustum plane, which splits each of the exist-
ing sub-triangles creating four seperate triangles for
rasterization.

Figure 4: A demonstration of the triangle clipping
algorithm

5



The mesh rendering is best demonstrated through
live interaction with the provided graphical interface.
Figure 5 shows a rendering of the Stanford bunny us-
ing this interface, alongside a buggy rendering caused
by inverted indexing of mesh vertices.

Figure 5: Forward and inversed vertex indexing of
the Stanford bunny

Using the graphical interface, meshes on the order
of 20000 triangles can be manipulated in real time,
and triangle counts of 40000 or more begin to lag
behind user input rates.

Note that although we have a graphical interface,
it is just a front end to the rendering code. The func-
tions and structures which produce images are com-
pletely decoupled from any dependencies, and can be
compiled using just a modern C compiler. The SDL
and libpng libraries simply provide different methods
of output for the in-memory image structure.

Our most significant results come from experi-
ments conducted on the IBM Blue Gene/Q at RPI’s
Computational Center for Nanotechnology Innova-
tions. This BGQ system consist of two racks, each
containing containing 1024 compute nodes. Each
compute node, in turn, contains 16 cores and 16 GB
of RAM. Each core runs at 1.6 GHz and supports up
to 4-way symmetric multi-threading. For these ex-
periments, we mapped mesh partitions to cores, that
is a single core performed the local rendering for one
mesh partition and participated in the parallel image
merge.

Two parallel meshes were available from previous
work. The first is a 32-part mesh of some blood ves-
sels, which we will call the arterial mesh. Each part of
this mesh is made of 65000 tetrahedra, for a total of
about 2 million tetrahedra. The second mesh is a 64-

part mesh of the Stanford Linear Accelerator, which
is called the SLAC mesh. Each part of the SLAC
mesh is composed of 230000 tetrahedra, for a total of
about 15 million tetrahedra in the entire SLAC mesh.
The mesh description files for the SLAC mesh total
over 2 GB of data.

The parallel tests proceed as follows: given a cam-
era position, color selection, and image resolution,
render the mesh using these parameters by locally
rendering the surface triangles of one part and merg-
ing the images. The final image is written to file.
During this process we keep track of the time required
to render, the maximum number of surface triangles
locally rendered, the time to merge the images, and
the number of merge steps.

We begin by rendering the arterial mesh with an
appropriate red and blue color scheme. The result
is shown in Figure 8. We initially had trouble with
missing triangles in this mesh, caused by improper
backface culling, which can be seen in Figure 6. At
that time triangles were judged by the dot product
with the Z vector, but under perspective transforma-
tion the camera-to-triangle vector should be used.

Figure 6: Incorrect backface culling of the arterial
mesh

6



Once that was corrected, Figure 8 was produced
in at a resolution of 1920 × 1080, also known as full
HD or 1080p. The reproduction in this paper was
cropped to single out the mesh. This initial run took
0.234 seconds to render locally and 1.66 seconds to
merge the 32 images. When merging images for the
arterial mesh, MPI has to do 5 levels of pairwise
merging since 32 = 25. We carefully profiled the run
from this point and tried to improve performance.
Two major improvements were made: first, the merge
operation was rewritten into a single optimized loop
over pixels. Second, we noticed that variability in
merge times was due to processor imbalance after lo-
cal rendering, so we introduce a barrier before the
merge operation so that our results reflect the true
lower bound on merge time for synchronized proces-
sors. The result is that the same image is locally ren-
dered in 0.189 seconds and merged in 0.803 seconds,
of which 0.628 seconds were spent in the pairwise op-
erator and the rest are due to message passing and
memory management.

Careful readers will notice a few black pixels on
otherwise clear surface, which is due to the Z-fighting
phenomenon discussed in the Graphics Pipeline Sec-
tion. In this case, such artifacts are caused by tri-
angles which are not part of the object’s surface but
are on the boundary between parallel partitions. No-
tice that while there is Z-fighting between all adja-
cent triangles, only these interior triangles cause vi-
sual problems. There are well-established methods of
classifying faces that would alleviate this problem by
not rendering the interior faces. Implementing this
solution is an immediate area of future work.

Satisfied at least that our merge implementation
was close to optimal, we move on to the larger SLAC
mesh. The first good image from the exterior of the
SLAC mesh is actually Figure 12. The Stanford Lin-
ear Accelerator is a long apparatus, so there is less
detail to see when the entire device is visible. Focus-
ing on this section shows details of the mesh since
triangles are still individually distinguishable, and
produces a more interesting frame. Figure 12 also
shows the perspective effects near the far right of the
frame, The full SLAC mesh rendered in 1080p res-
olution is shown in Figure 9. The maximum local
rendering work done for the SLAC mesh is render-

ing 22660 surface triangles in 0.439738 seconds. The
merging operation, used 6 times for 26 = 64 parts,
took a total of 0.715846 seconds to run.

In order to stress the parallel rendering system to
its fullest potential, we construct a rendering input
sufficient to conduct a test using 1024 processes. Un-
like before, we are forced to overcommit processes
to cores due to machine partition limitations, which
means we used 2 processes per core, 32 processes
per node, and 32 nodes. In order to create enough
mesh entities to render we instance the SLAC mesh
16 times in a rectangular tiled pattern. Each of 16
groups of 64 processes renders an instance of the
SLAC mesh, and the images from all 1024 processes
are merged as before, again in 1080p resolution. The
resulting image is shown in Figure 13. This figure
took exactly the same time to locally render, since no
process had more work than before. The merging re-
quired 10 binary steps for 210 = 1024 processes, and
took a total of 2.657428 seconds to execute. Notice
that in both this result and the single SLAC mesh re-
sult, individual triangles become smaller than a pixel,
and the output produced is still quite smooth so our
method handles this situation well.

Finally, although the majority of these renderings
used huge meshes and 1080p resolution, we would
also like to examine the efficiency of this technique for
fast rendering of low-resolution images, although still
focusing on large meshes. To begin with, we begin by
confirming the predicted relationship between merge
time and pixel count by rendering the SLAC mesh
at all the standard resolutions with 4:3 aspect ratio.
Note that this is again using 64 processes and thus 6
serial pairwise merge operations. Figure 7 shows the
timing results for this test.

For a resolution of 320 by 200 pixels, the merge
operation requires only 0.027 seconds To merge 64
images across 4 BGQ nodes. This figure suggests
that our merging technique uses approximately 76
nanoseconds per pairwise merge per pixel. A simi-
lar calculation using the 1024 process case estimates
about 85 nanoseconds per pairwise merge per pixel.
Using a conservative estimate of 100 nanoseconds per
pairwise merge per pixel, we can estimate that a 200
by 200 pixel image could be created using 1024 local
images in just 0.04 seconds. Likewise, we can esti-

7



Figure 7: Merge time over pixel count for standard
resolutions

mate based on the SLAC mesh renderings that tri-
angles are rendered on average in about 20 microsec-
onds. Based on these estimates, we could predict
that a mesh partitioned to a maximum of 1000 tri-
angles per process could be locally rendered in 0.02
seconds. Combining these, a 1 million triangle mesh
partitioned into 1024 parts could be rendered in 0.06
seconds, which gives a frame rate close to 16 frames
per second. Pushing the frame rate limit of our tech-
nique is an area of immediate future work.

6 Contributions

This project was completed by the authors over the
course of about one month. Dan Ibanez developed
the 2D and 3D rendering system for primitives. Bill
Tobin developed mesh rendering code based on prim-
itive rendering, and implemented the parallel image
merging algorithm using MPI.

7 Conclusion

We have presented an implementation of the graph-
ics pipeline that executes directly on an IBM Blue
Gene/Q, as well as an image merging technique which
allows parallel rendering using a single reduction.
This method has been tested with meshes composed
of millions of interior tetrahedra and surface triangles
partitioned up to a thousand processes. The output

images are smooth enough for many scientific and
graphical applications. The rendering times are com-
petitive with other methods of in-situ visualization
and, and seems a promising foundation for interac-
tive in-situ rendering on machines like the BGQ in
the future.

There are many avenues of future work for this
system. Most importantly, we would like to tune the
system for high frame rates using meshes with less
triangles per part. Given interactive frame rates, the
next technical challenge is establishing a communi-
cation link to interact with the BGQ in near real
time. The mesh rendering technique could also be
improved, including using partition model classifica-
tion to eliminate harmful Z-fighting and implement-
ing more advanced shading for graphical applications.

References

[1] “libpng.txt - A description on how to use and
modify libpng,” 2010.

[2] N. Fabian, K. Moreland, D. Thompson, A. Bauer,
P. Marion, B. Geveci, M. Rasquin, and K. Jansen,
“The paraview coprocessing library: A scalable,
general purpose in situ visualization library,” in
Large Data Analysis and Visualization (LDAV),
2011 IEEE Symposium on, pp. 89–96, 2011.

[3] D. Ellsworth, B. Green, C. Henze, P. Moran,
and T. Sandstrom, “Concurrent visualization
in a production supercomputing environment,”
IEEE Transactions on Visualization and Com-
puter Graphics, vol. 12, pp. 997–1004, Sept. 2006.

[4] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak,
O. Ghattas, K.-L. Ma, and D. R. O’Hallaron,
“From mesh generation to scientific visualization:
an end-to-end approach to parallel supercomput-
ing,” in Proceedings of the 2006 ACM/IEEE con-
ference on Supercomputing, SC ’06, (New York,
NY, USA), ACM, 2006.

[5] H. Yu, K.-L. Ma, and J. Welling, “A parallel vi-
sualization pipeline for terascale earthquake sim-
ulations,” in Proceedings of the 2004 ACM/IEEE

8



conference on Supercomputing, SC ’04, (Washing-
ton, DC, USA), pp. 49–, IEEE Computer Society,
2004.

[6] A. Stompel, K.-L. Ma, E. B. Lum, J. Ahrens, and
J. Patchett, “Slic: scheduled linear image com-
positing for parallel volume rendering,” in Pro-
ceedings of the 2003 IEEE Symposium on Parallel
and Large-Data Visualization and Graphics, p. 6,
IEEE Computer Society, 2003.

[7] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F.
Krogh, “Parallel volume rendering using binary-
swap compositing,” Computer Graphics and Ap-
plications, IEEE, vol. 14, no. 4, pp. 59–68, 1994.

9



8 Figures

Figure 8: A high-resolution rendering of the arterial mesh

Figure 9: A high-resolution rendering of the entire SLAC mesh

10



Figure 10: A rendering of the arterial mesh colored by processor

Figure 11: A rendering of the SLAC mesh colored by processor

11



Figure 12: A high-resolution closeup of the SLAC mesh

12



Figure 13: 16 tiled instances of the SLAC mesh, 1024 processes

13


