
Terrain Generation Using Delaunay Triangulation and Image Analysis

Brian Truhlar

Abstract

When artists want to create a 3d mesh that is

influenced by a height map, it is usually

done through a manual process that is time

consuming, inaccurate, and results in

inefficient mesh density. This paper

describes our method for solving these

problems with an automated process with

little user variables to set. Fewer options to

manage, however, can lead to inexact

results.

1 Introduction

One of the common ways to generate a

terrain mesh that reflects the values of a

height map is to use a greyscale image as a

displacement map for the geometry. The

main problem with this is the fact that in

order to obtain a detailed result, one must

use a rather dense mesh. Not only is this a

potential waste of memory if there are areas

of low detail in the displacement texture, but

it also results in uniformly sized geometric

detail.

This paper attempts to solve these problems

by analyzing the image with subdivided

quadrants for areas of high detail, applying

Delaunay Triangulation to the resulting data,

and then printing the results so a 3d

application can import the mesh. Other

groups have addressed similar problems

where they have a constrained area that

needs to be triangulated as well as weight

masks for areas that need high geometric

detail [Raman et al. 2008]. Lee and

Schachter [1980] discussed ways of

improving the speed of Delaunay

Triangulation; however, this paper does not

focus as much on the computation time

since this technique is not intended for real-

time use.

2 Related Works

While not completely related to this project,

the mesh editing from Homework 1 served

as inspiration for this project. In addition,

many files from the homeworks were used

as templates and the Mersenne Twister

header file was included directly.

3 Implementation

In this section the custom classes, libraries,

and the algorithm itself will be described.

3.1 Classes

Due to the fact that Delaunay Triangulation

becomes a much larger challenge in three

dimensions, our data structures are designed

to utilize only two dimensions while storing

the third.

3.1.1 Point

Instead of storing an x, y, and z value, we

only store x and y, while z is the 0 – 255

value of the pixel. The pixel’s value in

relation to the image will be discussed in the

algorithm section.

Based on these facts, x and y are floats and z

is an integer value. The Point class also has

all the standard set() and get() functions.

3.2 CImg Library

This algorithm also makes use of the CImg

library. CImg is a self-contained header file

that only needs to be linked to the code;

from there, one can perform image based

operations on their file input. For this

algorithm, the image() function was used to

access a pixel’s red channel value, 0 – 255.

Although this algorithm utilizes greyscale

images for the height maps, the images

themselves are saved in RGB color space.

This allows for the algorithm to potentially

expand beyond greyscale images for input.

3.3 Algorithm

3.1 Image Analysis

Figure 1: Diagram of a quadrant

Throughout analyzing the image, the

concept of a quadrant will be used

frequently. A quadrant can be defined as ¼

the area that is currently being considered,

with points xLower, xUpper, yLower, and

yUpper designating the top left (xLower,

yLower) and bottom right (xUpper, yUpper)

corners of the area. A second important note

is that this algorithm currently only works

with images that have equal width and

height with an even number of pixels.

First, housekeeping is done to ensure that all

images have at least a minimum amount of

points assigned to them. To do this, points

are placed at each corner of the image, one

in the “center” of the image, and one point at

the center of each quadrant (the image is

initially split into 4 quadrants).

Next we call the function analyzeQuadrant()

and pass in the 4 main quadrants of the

image. analyzeQuadrant() is a recursive

function which takes the image, the 4

corners of the current quadrant, a count, and

a maxdepth as input.

analyzeQuadrant() will first check that count

is not greater than max depth. This prevents

the quadrants from being subdivided too

much. Next, it will call

computeStandardDeviation() on the pixels

that it covers, for now, we only need to

know that computeStandardDeviation()

returns true if the pixels that the quadrant

covers vary enough in their values to be

considered “detailed”.

There are four conditions that can end the

recursive function:

1. Max depth has been reached, and the

quadrant’s pixels are considered

“detailed” :

Add the quadrant’s center pixel’s

average value as a point (the

surrounding 3x3 grid), return.

2. The next quadrant subdivision will

make the quadrant’s size less than

3x3, and the quadrant’s pixels are

considered “detailed” :

Add points for all the pixels in

the quadrant, return.

3. The next quadrant subdivision will

make the quadrant’s size less than

3x3, and the quadrant’s pixels are

not considered “detailed” :

Add the quadrant’s center pixel’s

average value as a point (the

surrounding 3x3 grid), return.

4. The quadrant’s pixels are not

considered “detailed”:

Add the quadrant’s center pixel’s

average value as a point (the

surrounding 3x3 grid), return.

Finally, if none of those stopping criteria are

met, call analyzeQuadrants() four times,

once for each sub quadrant of the current

quadrant.

The computeStandardDeviation() function

analyses all the pixels that are in a quadrant

and calculates their standard deviation (1). It

then checks how many of those pixels lie

outside of 1 standard deviation from the

mean and calculates the percentage out of

the whole that are the “outliers”. This

percentage can then be compared to a user

defined threshold. If the percentage is larger

than the user defined amount, the pixels in

that quadrant can be considered varied

enough to be “detailed”.

(1)

 √ ∑()

N is the number of pixels, xi is the value of

the current pixel, and is the mean.

3.2 Delaunay Triangulation

Once the image has been analyzed and the

points representing detail areas have been

added, we can triangulate the points. The

pseudo-code is as follows:

for(i=0; i<numPoints; i++)

 for(j=i+1; j<numPoints-1; j++)

 for(k=j+1; k<numPoints-2;k++)

 triangulate(i,j,k);

Triangulate(i,j,k){

 computeCircumcenter(i,j,k)

 for(points 0… numPoints){

 //reject

 if(point is in circumcenter) return;

 }

 Add triangle (i,j,k)

}

The function computeCircumcenter()

determines the tightest circle which passes

through all three points of the triangle and

returns the center point of the circle (x,y

coordinates) and it’s radius. The rest of the

above code goes through all the points and

tests whether the circumcenter computed for

those three points has any other points lying

within it. If it does, it’s not a valid triangle,

if it doesn’t add the triangle to the final

mesh.

Finally, the printed data is sent through a

custom script to be imported into 3D

software (Blender).

4. Results

For our implementation of the algorithm,

while everything works, it doesn’t quite

reach a useable state.

Figure 2: On the left is the input file

(16x16px) and on the right is the point

output.

One problem can be seen in Figure 2. When

you have two extremes, such as pure black

and pure white (values 0, 255) the formula

to determine outliers reaches a corner case

where the values and their standard

deviations perfectly equal the threshold to be

considered an outlier. As a result, most of

the points seen on the right of Figure 1 are

the default points set up at the beginning of

the algorithm.

Figure 3: Left is 16x16px input, center is a

top down view of generated points, right is a

perspective view of the points.

Figure 4: Delaunay Triangulation of the

points from Figure 3.

Figure 4 illustrates an unfortunate feature of

our implementation of Delaunay

Triangulation. Because of the run-time of

the triangulation is O(n4), anything much

larger than 32x32 points becomes too large

to run in a reasonable amount of time.

Figure 5: 128x128px image. Notice the

sparse points in areas of pure white.

Figure 5 demonstrates how if a larger

quadrant determines that there are no

“interesting” pixels in it, parts of the image

can get “cut off” from the point assignment.

An example in the image would be the top

right of the smile line.

Figure 6: South America, 512x512px

Figure 6 once again shows the sparse points

in areas of low detail, such as the ocean;

however, it also shows some faults in what

we believe to be our implementation of the

recursive calls to analyzeQuadrants().

Figure 7: Incorrect triangulation

Figure 7 demonstrates what happens when

you don’t add a small amount (~0.05) of

variation to the coordinates of the points.

Since the points lay directly on a grid, the

triangulation process has to deal with two

plausible triangles that have the same

values, even though there can only be one.

5. Conclusion and Future Work

In this paper we presented an automatic way

to generate a mesh based off of a height

map. The important features are the limited

number of input commands needed to be

given by the user (only the standard

deviation threshold), smart detail placement

in areas of high visual interest, and the

automatic mesh generation. There are

multiple areas that can be improved though,

such as fixing known implementation bugs,

handling non-square images, handling

images with widths and heights that are not

even, and most importantly, improving the

Delaunay Triangulation runtime.

References

Raman, S., & Jianmin, Z. (2008). Efficient

Terrain Triangulation And Modification

Algorithms For Game

Applications.International Journal of

Computer Games Technology, 2008, 1-5.

Retrieved April 20, 2013, from

http://dx.doi.org/10.1155/2008/316790

Lee, D. T., & Schachter, B. J. (1980). Two

Algorithms For Constructing A Delaunay

Triangulation. International Journal of

Computer & Information Sciences, 9(3),

219-242.

http://dx.doi.org/10.1155/2008/316790

Shewchuk, J. Triangle: Engineering a 2D

Quality Mesh Generator and Delaunay

Triangulator

Nasa Visible Earth

http://visibleearth.nasa.gov/view_cat.php?ca

tegoryID=1484

http://visibleearth.nasa.gov/view_cat.php?categoryID=1484
http://visibleearth.nasa.gov/view_cat.php?categoryID=1484

