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Abstract 

When artists want to create a 3d mesh that is 

influenced by a height map, it is usually 

done through a manual process that is time 

consuming, inaccurate, and results in 

inefficient mesh density. This paper 

describes our method for solving these 

problems with an automated process with 

little user variables to set. Fewer options to 

manage, however, can lead to inexact 

results. 

1 Introduction 

One of the common ways to generate a 

terrain mesh that reflects the values of a 

height map is to use a greyscale image as a 

displacement map for the geometry. The 

main problem with this is the fact that in 

order to obtain a detailed result, one must 

use a rather dense mesh. Not only is this a 

potential waste of memory if there are areas 

of low detail in the displacement texture, but 

it also results in uniformly sized geometric 

detail. 

This paper attempts to solve these problems 

by analyzing the image with subdivided 

quadrants for areas of high detail, applying 

Delaunay Triangulation to the resulting data, 

and then printing the results so a 3d 

application can import the mesh. Other 

groups have addressed similar problems 

where they have a constrained area that 

needs to be triangulated as well as weight 

masks for areas that need high geometric 

detail [Raman et al. 2008]. Lee and 

Schachter [1980] discussed ways of 

improving the speed of Delaunay 

Triangulation; however, this paper does not 

focus as much on the computation time 

since this technique is not intended for real-

time use. 

2 Related Works 

While not completely related to this project, 

the mesh editing from Homework 1 served 

as inspiration for this project. In addition, 

many files from the homeworks were used 



as templates and the Mersenne Twister 

header file was included directly. 

3 Implementation 

In this section the custom classes, libraries, 

and the algorithm itself will be described. 

3.1 Classes 

Due to the fact that Delaunay Triangulation 

becomes a much larger challenge in three 

dimensions, our data structures are designed 

to utilize only two dimensions while storing 

the third. 

3.1.1 Point 

Instead of storing an x, y, and z value, we 

only store x and y, while z is the 0 – 255 

value of the pixel. The pixel’s value in 

relation to the image will be discussed in the 

algorithm section.  

Based on these facts, x and y are floats and z 

is an integer value. The Point class also has 

all the standard set() and get() functions. 

3.2 CImg Library 

This algorithm also makes use of the CImg 

library. CImg is a self-contained header file 

that only needs to be linked to the code; 

from there, one can perform image based 

operations on their file input. For this 

algorithm, the image() function was used to 

access a pixel’s red channel value, 0 – 255. 

Although this algorithm utilizes greyscale 

images for the height maps, the images 

themselves are saved in RGB color space. 

This allows for the algorithm to potentially 

expand beyond greyscale images for input.  

3.3 Algorithm 

3.1 Image Analysis

 

Figure 1: Diagram of a quadrant 

Throughout analyzing the image, the 

concept of a quadrant will be used 

frequently. A quadrant can be defined as ¼ 

the area that is currently being considered, 

with points xLower, xUpper, yLower, and 

yUpper designating the top left (xLower, 

yLower) and bottom right (xUpper, yUpper) 

corners of the area. A second important note 

is that this algorithm currently only works 

with images that have equal width and 

height with an even number of pixels. 

First, housekeeping is done to ensure that all 

images have at least a minimum amount of 

points assigned to them. To do this, points 

are placed at each corner of the image, one 

in the “center” of the image, and one point at 

the center of each quadrant (the image is 

initially split into 4 quadrants). 

Next we call the function analyzeQuadrant() 

and pass in the 4 main quadrants of the 

image. analyzeQuadrant() is a recursive 

function which takes the image, the 4 

corners of the current quadrant, a count, and 

a maxdepth as input. 

analyzeQuadrant() will first check that count 

is not greater than max depth. This prevents 

the quadrants from being subdivided too 

much. Next, it will call 



computeStandardDeviation() on the pixels 

that it covers, for now, we only need to 

know that computeStandardDeviation() 

returns true if the pixels that the quadrant 

covers vary enough in their values to be 

considered “detailed”. 

There are four conditions that can end the 

recursive function: 

1. Max depth has been reached, and the 

quadrant’s pixels are considered 

“detailed” : 

Add the quadrant’s center pixel’s 

average value as a point (the 

surrounding 3x3 grid), return. 

2. The next quadrant subdivision will 

make the quadrant’s size less than 

3x3, and the quadrant’s pixels are 

considered “detailed” : 

Add points for all the pixels in 

the quadrant,  return. 

3. The next quadrant subdivision will 

make the quadrant’s size less than 

3x3, and the quadrant’s pixels are 

not considered “detailed” : 

Add the quadrant’s center pixel’s 

average value as a point (the 

surrounding 3x3 grid), return. 

4. The quadrant’s pixels are not 

considered “detailed”: 

Add the quadrant’s center pixel’s 

average value as a point (the 

surrounding 3x3 grid), return. 

Finally, if none of those stopping criteria are 

met, call analyzeQuadrants() four times, 

once for each sub quadrant of the current 

quadrant. 

The computeStandardDeviation() function 

analyses all the pixels that are in a quadrant 

and calculates their standard deviation (1). It 

then checks how many of those pixels lie 

outside of 1 standard deviation from the 

mean and calculates the percentage out of 

the whole that are the “outliers”. This 

percentage can then be compared to a user 

defined threshold. If the percentage is larger 

than the user defined amount, the pixels in 

that quadrant can be considered varied 

enough to be “detailed”. 
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N is the number of pixels, xi is the value of 

the current pixel, and   is the mean. 

3.2 Delaunay Triangulation 

Once the image has been analyzed and the 

points representing detail areas have been 

added, we can triangulate the points. The 

pseudo-code is as follows: 

for(i=0; i<numPoints; i++) 

    for(j=i+1; j<numPoints-1; j++) 

        for(k=j+1; k<numPoints-2;k++) 

 triangulate(i,j,k); 

Triangulate(i,j,k){ 



    computeCircumcenter(i,j,k) 

    for(points 0… numPoints){ 

        //reject    

        if(point is in circumcenter) return; 

    } 

    Add triangle (i,j,k) 

} 

The function computeCircumcenter() 

determines the tightest circle which passes 

through all three points of the triangle and 

returns the center point of the circle (x,y 

coordinates) and it’s radius. The rest of the 

above code goes through all the points and 

tests whether the circumcenter computed for 

those three points has any other points lying 

within it. If it does, it’s not a valid triangle, 

if it doesn’t add the triangle to the final 

mesh. 

Finally, the printed data is sent through a 

custom script to be imported into 3D 

software (Blender). 

4. Results 

For our implementation of the algorithm, 

while everything works, it doesn’t quite 

reach a useable state. 

Figure 2: On the left is the input file 

(16x16px) and on the right is the point 

output.  

One problem can be seen in Figure 2. When 

you have two extremes, such as pure black 

and pure white (values 0, 255) the formula 

to determine outliers reaches a corner case 

where the values and their standard 

deviations perfectly equal the threshold to be 

considered an outlier. As a result, most of 

the points seen on the right of Figure 1 are 

the default points set up at the beginning of 

the algorithm. 

  

Figure 3: Left is 16x16px input, center is a 

top down view of generated points, right is a 

perspective view of the points. 

 

 

Figure 4: Delaunay Triangulation of the 

points from Figure 3. 

 

Figure 4 illustrates an unfortunate feature of 

our implementation of Delaunay 

Triangulation. Because of the run-time of 

the triangulation is O(n4), anything much 

larger than 32x32 points becomes too large 

to run in a reasonable amount of time. 



 

Figure 5: 128x128px image. Notice the 

sparse points in areas of pure white. 

Figure 5 demonstrates how if a larger 

quadrant determines that there are no 

“interesting” pixels in it, parts of the image 

can get “cut off” from the point assignment. 

An example in the image would be the top 

right of the smile line.

 

Figure 6: South America, 512x512px 

Figure 6 once again shows the sparse points 

in areas of low detail, such as the ocean; 

however, it also shows some faults in what 

we believe to be our implementation of the 

recursive calls to analyzeQuadrants(). 

 

Figure 7: Incorrect triangulation 

Figure 7 demonstrates what happens when 

you don’t add a small amount (~0.05) of 

variation to the coordinates of the points. 

Since the points lay directly on a grid, the 

triangulation process has to deal with two 

plausible triangles that have the same 

values, even though there can only be one. 

 

5. Conclusion and Future Work 

In this paper we presented an automatic way 

to generate a mesh based off of a height 

map. The important features are the limited 

number of input commands needed to be 

given by the user (only the standard 

deviation threshold), smart detail placement 

in areas of high visual interest, and the 

automatic mesh generation. There are 

multiple areas that can be improved though, 

such as fixing known implementation bugs, 

handling non-square images, handling 

images with widths and heights that are not 

even, and most importantly, improving the 

Delaunay Triangulation runtime. 
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