
Jedediyah Williams
willij16@rpi.edu

May 2, 2013

1 Introduction

I present multiple small simulators implemented using OpenGL and NVIDIA’s
Compute Unified Device Architecture (CUDA) for parallel computing on GPU.
General purpose GPU computing is becoming more populer, and is currently
becoming an important tool in multibody dynamics. For example, the Bullet
physics library [1] has been focused heavily on CUDA based implmentations of
dynamics functions in its recent releases.

Having never studied parallel computing before, a significant amount of time
was spent reading and learning how to properly form kernel functions to fully
exploit the architecture of CUDA enabled graphics cards. Thanks go to Josh for
lending me ”Cuda by Example” [2], which is how I spent most of my reading time
and learned most of what I now know about CUDA. NVIDIA’s code samples
[3] were also helpful when first starting out, particularly ”simpleGL” which
demonstrates how to use basic interoperability between CUDA and OpenGL.

Since I planned on working with triangle meshes, I had hoped I’d be able
to use and modify the code from class assignments, however hash.h will not
compile with CUDA because unordered map is not compatible with CUDA. So
I had to start from nearly scratch, re-using code snippets where I could.

2 Simulating with CUDA

2.1 Basics of CUDA

Developing in CUDA involves writing heterogeneous code that consists of both
traditional C++ as well as kernel code that is compiled to run on a GPU
device. Conveniently, CUDA code was designed to use C++ like syntax, giving
the programmer the sense that she is writing in a homogeneous environment.

1

willij16@rpi.edu

Common uses will typically involve copying data from host memory to device
memory, operating on that data in parallel, then copying resultant data from
device back to host. An example of this is shown in the complete ”hello world”
example of a CUDA program in figure 1.

Figure 1: Example CUDA program.

2.2 Additional Benefits of GPU Programming

In addition to the benefits of parallel simulation, running simulations in CUDA
provides other benefits as well. In particular, because CUDA kernel code is
being executed on a GPU, it has access to the graphics memory. Because of
this, it is easy to for exapmle manipulate VBO vertex data directly from the
GPU itself instead of relying on updates from a CPU process. This technique is
called interoperability, and is employed in all of the CUDA simulations presented
here.

2

3 Particle Based Cloth Simulation

The first parallel simulation I implemented used the mass-spring model of cloth
described by Provot [4]. This is a model that was implemented on CPU for
our second assignment, is highly parallelizable, and is straight-forward. These
attributes made it a great first simulation since I had a serial implementation to
compare to, and was practically guaranteed good speedup results. The model
uses a regular grid of point mass particles attached to neighboring particles by
virtual springs. Three different spring linkages are used for a given particle
point P :

• Structural springs which connect to the particles directly above, below,
left, and right of P .

• Shear springs which connect particles one diagonal element away from P .

• Flexion springs which are similar to structural springs but connect two
elements away from P instead of one.

At every simulation step, the internal forces of each particle point Pij are
calculated based on the distance l to each connected particle, as well as the rest
length l0 to each respective particle. After the forces are calculated for each
particle, we doubly integrate the acceleration to get the new position of the
particle. However it is quite possible, in fact likely that after this stage, particles
have moved away from some particles to positions which will generate large
forces in the next time step. This results in So a correction is iteratively applied
in which we sequentially test every pair of connected particles and project their
positions to a maximum stretch of 1.1 times their rest length l0 if this constraint
is violated. This sequence of steps is outlined in algorithm 1.

Algorithm 1 Provot Mass-Spring Model for Rigid Cloth Behavior

1. for each timestep of size ∆t
2. for each particle Pij

3. Fij(Pij) = −Σk,l∈RKi,j,k,l[li,j,k,l−l0i,j,k,l

li,j,k,l

||li,j,k,l||]

4. for each particle Pij

5. aij(t+ ∆t) = 1
mFij

6. vij(t+ ∆t) = vij + ∆taij(t+ ∆t)
7. Pij(t+ ∆t) = Pij(t) + ∆tvij(t+ ∆t)
8. for i from 1 to 6
9. for each pair of connected particles Pk and Pl

10. if l > 1.1l0

11. move Pk and Pl toward each other a distance l−1.1l0
2

The parallel implementation of this algorithm in CUDA still calculates all
of the values as the serial algorithm above for lines 3, 5, 6, and 7. The one
implementation difference is that in the parallel version, each particle is simul-
taneously determining the correction vector in line 11 based on the position of

3

all its neighbors current positions before updating to a new position. This is of
course faster because it is done in parallel, but it is conveniently also more stable!
As a result, the GPU implementation was able to handle much larger meshes
without becoming unstable. The largest mesh I ran had 1,000,000 particles and
took approximately 0.2 seconds per simulation step.

Figure 2: View of 10,000 particle cloth becoming unstable on CPU.

Figure 3: 10,000 particle cloth rendering on GPU.

3.1 Comparison of CPU vs. GPU

A benchmark comparison was done in order to compare the performance of
the two different implementations of the cloth simulation. The following initial
simulation parameters were used for both:

• Timestep = 0.001 seconds

• Particle mass was set equal to 0.1 * MESHwidth * MESHheight

4

• Gravitational acceleration was 9.8 m/s2 in the −y direction

• Spring constants Kstructural = 5, Kshear = 2, Kbend = 2

• Points along the diagonals of the mesh were set as fixed

• 10 simulation iterations were completed for each graphics rendering

Several trials (about 10) were run for various square meshes, and the results
were averaged per mesh size. The metric used was the amount of time in
seconds to complete the first 1000 simulation steps. These results are presented
in figures 4 and 5.

100 400 900 1600 2500 3600 4900 6400 8100 10000 22500 40000 62500 90000 122500
0

60

120

180

240

300
CPU (HW 2)

GPU Blocked

Number of Particles in Cloth

T
im

e
 to

 C
o

m
p

le
te

 F
ir

st
 1

0
0

0
 S

im
u

la
tio

n
 S

te
p

s
(s

)

Figure 4: Performance of CPU and GPU implementations of cloth simulation.

100 400 900 1600 2500 3600 4900 6400 8100 10000 22500 40000
0

5

10

15

20

25

30

35

40

Problem Size

F
a

ct
o

r
o

f S
p

e
e

d
u

p
 (

G
P

U
 o

ve
r

C
P

U
)

Figure 5: Factor of speedup for GPU over CPU in cloth simulation.

The results are what we expect: a quadratic performance decrease for the
CPU implementation as a function of the grid width, and a significant speedup

5

in the GPU over the CPU as the grid size increases. The GPU performance
is precisely constant for the first six trials, taking 1.65 seconds to complete the
first 1000 timesteps. For problems of size 40,000 and up, the GPU performance
time approximately doubles for each of the few remaining trials.

The reason that the GPU implementation does not remain constant is that
a hardware limit is reached: I was using a EVGA GeForce GTX 680 graphics
card, which has 8 multiprocessors × 192 CUDA cores per multiprocessor for a
total of 1536 CUDA cores. During my experiments I was using block sizes that
were multiples of 5, with 1024 threads per block. So as soon as the number
of threads exceeded 5 ∗ 1536 = 7680, more threads needed processing than
there were available cores. In retrospect, now that I understand the CUDA
architecture better, I believe I was leaving a fraction of the CUDA cores unused
and I could have increased the GPU performance by using block sizes that were
multiples of 8 instead of 5.

4 Rigid Body Simulation

The particles in the cloth simulation were straight forward to represent since
each particle is an individual body in a grid structure. For N particles which
all have equal mass, we use an array to store position, velocity, acceleration,
and force, all of which have size 3N . Indexing such a representation is simple.
Rigid bodies composed of triangle meshes provide a greater challenge. Separate
meshes don’t necessarily have the same number of vertices, edges, nor faces.
This will bring us back to the idea briefly mentioned in section 2.2, CUDA
interoperability.

4.1 Rigid Body Representation

To start, there are several attributes that each body must store for use in dy-
namics. An array of the following Body struct is used to store information for
each body.

struct Body { int bodyID;
int dynamicsID;
uint local start, local end;
float mass;
float4 quat;
float3 position,
lin velocity,
rot velocity,
lin acceleration,
rot acceleration,
force,
torque;
float3 Fext, Text; };

6

The array of body information is copied to GPU global memory during ini-
tialization of the simulation, after all bodies have been created.

Vertex information for each body is stored twice: once as a constant stacked
vector of local vertex positions for all bodies, and a second time as graphics data
that is created as a VBO. The local coordinates are copied to GPU memory
along with the body information, and used during simulation to update the
world coordinate vertices stored as graphics data.

4.2 Collision Detection

Idealy, I would have liked to implemented mesh-mesh collision detection, but
that is a difficult problem beyond the scope of this project. Additionally, ac-
celeration data structures like a k-d tree or even a uniform grid would be very
useful during broad-phase collision detection.

The current state of the rigid body simulator does not include multibody dy-
namics, it only contains planar collision with a ground plane. At each timestep,
each vertex (for all bodies) determines its height. If the height is negative, it
atomically adds a force and torque proportional to the penetration depth to the
corresponding body’s applied force. For a body with center of mass located at
C, and a force F applied at point p on the body, let r be the vector from C to
p. The resultant force on the body is simply F , and the torque τ is given by
τ = r × F .

Figure 6: Example simulation of a cactus and Utah teapot.

7

5 Dynamics Solution

Although a proper dynamics formulation for multi-bodies is not yet imple-
mented, one of the first sets of CUDA kernel functions I wrote were variations
on the Gauss-Seidel method for iteratively solving systems of linear equations.
All variations solved the same type of problem: given square matrix A, vector
b, and initial guess x0, return an approximate solution x where Ax+ b = 0.

Algorithm 2 Parallel Gauss-Seidel

Given matrix A, vector b, and initial guess x0 of length N
Let x1 and r be vectors of length N

t← thread ID
for i from 1 to Max Iterations/2

r ← b[t] +At,1:N · x0
x1[t]← x0[t]− r/At,t

Synchronize Threads()
r ← b[t] +At,1:N · x1
x0[t]← x1[t]− r/At,t

Synchronize Threads()

Algorithm 3 Parallel Successive Over-Relaxation (SOR)

Given matrix A, vector b, and initial guess x0 of length N
Let x1 and r be vectors of length N
Let λ be a tunable parameter between 0 and 2

t← thread ID
for i from 1 to Max Iterations/2

r ← b[t] +At,1:N · x0
x1[t]← x0[t]− λr/At,t

Synchronize Threads()
r ← b[t] +At,1:N · x1
x0[t]← x1[t]− λr/At,t

Synchronize Threads()

Algorithm 4 Parallel Projected Successive Over-Relaxation (pSOR)

Given matrix A, vector b, and initial guess x0 of length N
Let x1 and r be vectors of length N
Let λ be a tunable parameter between 0 and 2

t← thread ID
for i from 1 to Max Iterations/2

r ← b[t] +At,1:N · x0
x1[t]← max(0, x0[t]− λr/At,t)
Synchronize Threads()
r ← b[t] +At,1:N · x1
x0[t]← max(0, x1[t]− λr/At,t)
Synchronize Threads()

8

Algorithms 2, 3, and 4 are three similar solvers. All three use the same tool
in order to allow simoultaneous solution per row: a second solution vector x1.
Each iteration of the loop reads from x0 and writes to x1, then reads from x1
and writes to x0. Further, threads are synchronized between these two stages,
guaranteeing safe read from one vector while writing to the other. The dot
product was also implemented as a kernel function.

The first solver is not technically a classical Gauss-Seidel solver since this
writing occurs in a different vector and does not forward substitute during iter-
ations. It is in fact a special case of a blocked Gauss-Seidel method with block
size of 1.

The second solver uses successive over-relaxation (SOR) in order to converge
more quickly. The value of λ used is tunable and must be in the range 0 ≤ λ ≤ 2.

During testing, I found that a value of λ =
√
2
2 worked well for problems I was

testing, and convergence to 0.001 was usually reached within 5 or 6 iterations.
The third solver is a projected SOR method (pSOR). This is used when we

require the result to be non-negative. It uses the same method as SOR, but if
a solution element is found to be less than zero, it is ”projected” to zero.

6 Kinematic Update

After forces and torques are found for each body, accelerations are determined
and integrated to get updated linear and rotational velocities. The quaternion
q representing the rotation is updated by

q ← {cos(|ω∆t|/2),
ω

|ω∆t|
sin(|ω∆t|/2)} ∗ q

where ω is the angular velocity and the ∗ operator represents quaternion mul-
tiplication.

Once the new center of mass positions and rotations are known, the world-
frame vertex positions are updated by transforming the local vertex data stored
in global GPU memory and placing the result with the graphics data. The
transformation involves translation by the body’s position, then rotation by the
body’s quaternion. I wrote a small but very useful quaternion library in CUDA
for use by kernel functions on the GPU.

7 Possible Future Work & Conclusion

I learned a lot about CUDA in the past four weeks, and feel I could effectively
use it in research now. Although I wasn’t able to implement a complete and
robust multibody physics engine for this project, I was happy to get some simple
dynamics working and running fully on GPU. In particular, I think OpenGL
Interop is interesting and useful. If I continue work on the project, I’d like to
look deeper into the work by Tasora and Negrut [5], particularly concerning
efficient storage of datastructures.

9

The following short list is composed of the things I think would be on the
soon-to-do list for the rigid-body simulator.

• Script parsing for loading simulation scenes

• Collision detection - Broad phase kd-tree

• Non-penetration and friction constraint dynamics

Video examples of the simulators running are available at the following
URL’s:

10,000 particle cloth: http://www.youtube.com/watch?v=X-Yfq-_vmRU
22,500 particle cloth: http://www.youtube.com/watch?v=AoeSudIE6Hg
Bouncing bunny! http://www.youtube.com/watch?v=bxKYPyj52pU
Bouncing cactus & teapot: http://www.youtube.com/watch?v=GcunmvLDmek
Bunny blooper: http://www.youtube.com/watch?v=4qBeQct5iow

References

[1] Erwin Coumans, Bullet Physics Library: a professional free 3D Game Mul-
tiphysics Library. code.google.com/p/bullet

[2] Jason Sanders and Edward Kandrot, CUDA by Example: An Introduction
to General-Purpose GPU Programming. NVIDIA Corporation, July 2010.

[3] NVIDIA, CUDA Tookit Documentation. http://docs.nvidia.com/cuda/
cuda-samples/index.html, 2007-2012.

[4] Xavier Provot, Deformation constraints in a mass-spring model to describe
rigid cloth behavior. In Graphics Interface, 1995, (147-154), 1995.

[5] Alessandro Tasora and Dan Negrut, A parallel algorithm for solving complex
multibody problems with stream processors. 2009.

[6] Claude Lacoursiere, A Parallel Block Iterative Method for Interactive Con-
tacting Rigid Multibody Simulations on Multicore PCs. pp.956-965 In pro-
ceeding of: Applied Parallel Computing. State of the Art in Scientific Com-
puting, 8th International Workshop, PARA 2006, Umea, Sweden, June 18-
21, 2006.

10

http://www.youtube.com/watch?v=X-Yfq-_vmRU
http://www.youtube.com/watch?v=AoeSudIE6Hg
http://www.youtube.com/watch?v=bxKYPyj52pU
http://www.youtube.com/watch?v=GcunmvLDmek
http://www.youtube.com/watch?v=4qBeQct5iow
code.google.com/p/bullet
http://docs.nvidia.com/cuda/cuda-samples/index.html
http://docs.nvidia.com/cuda/cuda-samples/index.html

	Introduction
	Simulating with CUDA
	Basics of CUDA
	Additional Benefits of GPU Programming

	Particle Based Cloth Simulation
	Comparison of CPU vs. GPU

	Rigid Body Simulation
	Rigid Body Representation
	Collision Detection

	Dynamics Solution
	Kinematic Update
	Possible Future Work & Conclusion

