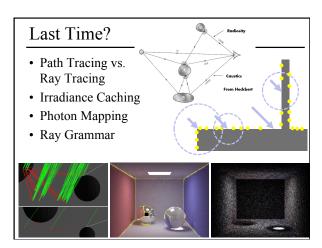
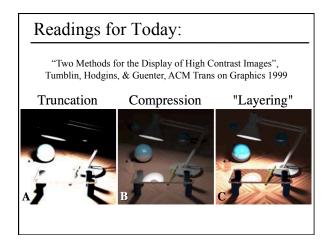
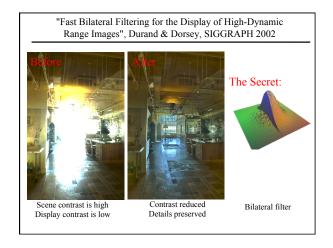
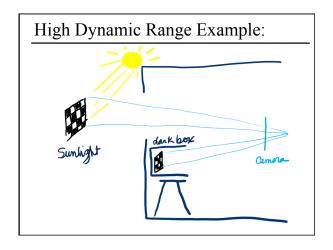
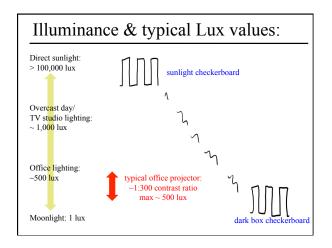
Sampling, Aliasing, & Mipmaps

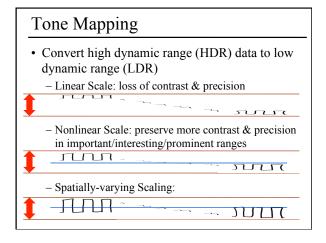










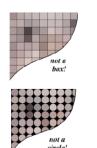


Today

- What is a Pixel?
- Examples of Aliasing
- Sampling & Reconstruction
- Filters in Computer Graphics
- Anti-Aliasing for Texture Maps

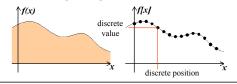
What is a Pixel?

- A pixel is not:
 - a box
 - a disk
 - a teeny tiny little light
- A pixel "looks different" on different display devices
- · A pixel is a sample
 - it has no dimension
 - it occupies no area
 - it cannot be seen
 - it has a coordinateit has a value



More on Samples

- Most things in the real world are *continuous*, yet everything in a computer is *discrete*
- The process of mapping a continuous function to a discrete one is called *sampling*
- The process of mapping a continuous variable to a discrete one is called *quantization*
- To represent or render an image using a computer, we must both sample and quantize



An Image is a 2D Function

- An ideal image is a continuous function I(x,y) of intensities.
- · It can be plotted as a height field.
- In general an image cannot be represented as a continuous, analytic function.
- Instead we represent images as tabulated functions.
- How do we fill this table?

Sampling Grid

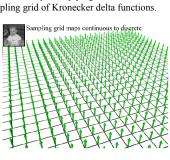
 We can generate the table values by multiplying the continuous image function by a sampling grid of Kronecker delta functions.

The definiton of the 2-D Kronecker delta is:

$$\delta(x,y) = \begin{cases} 1, & (x,y) = (0,0) \\ 0, & \text{otherwise} \end{cases}$$

And a 2-D sampling grid:

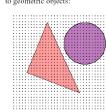
$$\sum_{j=0}^{h-1}\sum_{i=0}^{w-1}\delta(u-i,v-j)$$

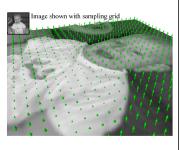


Sampling an Image

• The result is a set of point samples, or pixels.

The same analysis can be applied to geometric objects:



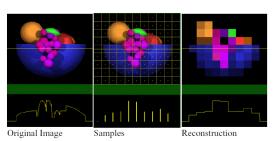


Questions?

Today

- What is a Pixel?
- Examples of Aliasing
- Sampling & Reconstruction
- Filters in Computer Graphics
- Anti-Aliasing for Texture Maps

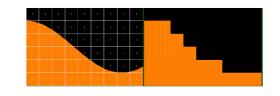
Examples of Aliasing



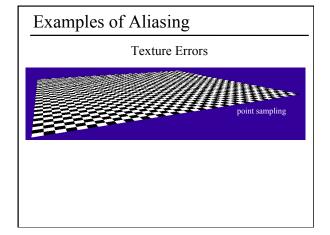
• Aliasing occurs because of *sampling* and *reconstruction*

Examples of Aliasing

Jagged boundaries



Improperly rendered detail



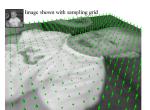
Questions?

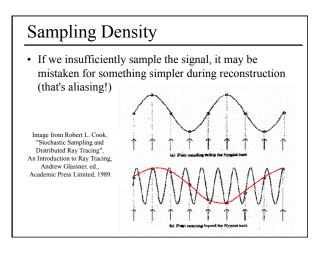
Today

- What is a Pixel?
- Examples of Aliasing
- Sampling & Reconstruction
 - Sampling Density
 - Fourier Analysis & Convolution
- Filters in Computer Graphics
- Anti-Aliasing for Texture Maps

Sampling Density

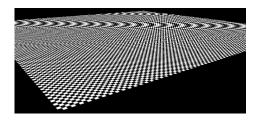
- How densely must we sample an image in order to capture its essence?
- If we under-sample the signal, we won't be able to accurately reconstruct it...





Sampling Density

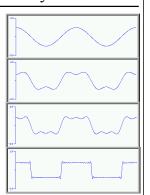
 Aliasing in 2D because of insufficient sampling density



Remember Fourier Analysis?

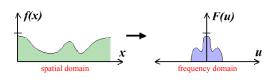
 All periodic signals can be represented as a summation of sinusoidal waves.

Images from http://axion.physics.ubc.ca/341-02/fourier/fourier.html



Remember Fourier Analysis?

• Every periodic signal in the *spatial domain* has a dual in the *frequency domain*.



• This particular signal is *band-limited*, meaning it has no frequencies above some threshold

Remember Fourier Analysis?

• We can transform from one domain to the other using the Fourier Transform.

frequency domain spatial domain

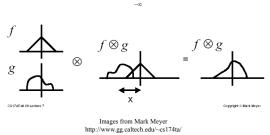
Fourier Transform
$$F(u,v) = \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-i2\pi(ux+vy)} dxdy$$

Inverse Fourier Transform
$$f(x,y) = \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{i2\pi(ux+vy)} dudv$$

Remember Convolution?

Convolution describes how a system with impulse response, h(x), reacts to a signal, f(x).

$$f(x) * h(x) = \int_{-\infty}^{\infty} f(\lambda)h(x - \lambda)d\lambda$$



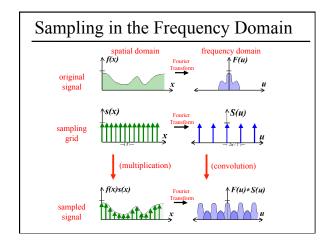
Remember Convolution?

- Some operations that are difficult to compute in the spatial domain can be simplified by transforming to its dual representation in the frequency domain.
- For example, convolution in the spatial domain is the same as multiplication in the frequency domain.

$$f(x) * h(x) \rightarrow F(u)H(u)$$

 And, convolution in the frequency domain is the same as multiplication in the spatial domain

$$F(u) * H(u) \rightarrow f(x)h(x)$$

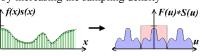


Reconstruction

- If we can extract a copy of the original signal from the frequency domain of the sampled signal, we can reconstruct the original signal!
- But there may be overlap between the copies. LP(u)(F(u) *S(u))

Guaranteeing Proper Reconstruction

- Separate by removing high frequencies from the original signal (low pass pre-filtering)
- $\uparrow F(u)LP(u)*S(u)$
- · Separate by increasing the sampling density



• If we can't separate the copies, we will have overlapping frequency spectrum during reconstruction → *aliasing*.

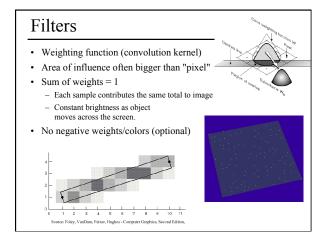
Sampling Theorem

• When sampling a signal at discrete intervals, the sampling frequency must be *greater than twice* the highest frequency of the input signal in order to be able to reconstruct the original perfectly from the sampled version (Shannon, Nyquist)

Questions?

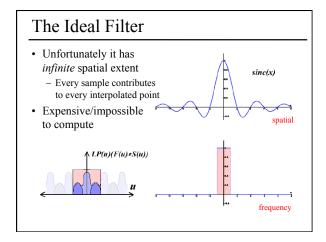
Today

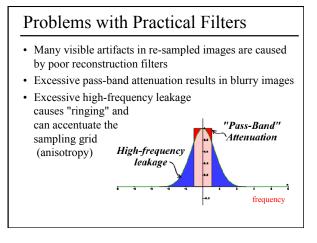
- What is a Pixel?
- Examples of Aliasing
- Sampling & Reconstruction
- Filters in Computer Graphics
 - Ideal, Gaussian, Box, Bilinear, Bicubic
- Anti-Aliasing for Texture Maps

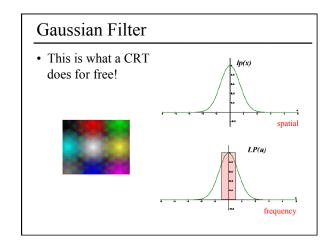


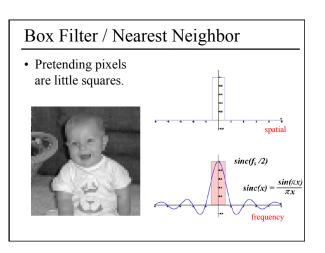
Filters

- · Filters are used to
 - reconstruct a continuous signal from a sampled signal (reconstruction filters)
 - band-limit continuous signals to avoid aliasing during sampling (low-pass filters)
- Desired frequency domain properties are the same for both types of filters
- Often, the same filters are used as reconstruction and low-pass filters



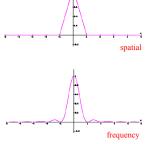


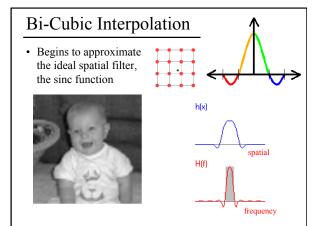




Tent Filter / Bi-Linear Interpolation

- Simple to implement
- · Reasonably smooth





Questions?

Today

- What is a Pixel?
- Examples of Aliasing
- Sampling & Reconstruction
- Filters in Computer Graphics
- Anti-Aliasing for Texture Maps
 - Magnification & Minification
 - Mipmaps
 - Anisotropic Mipmaps

Sampling Texture Maps

 When texture mapping it is rare that the screen-space sampling density matches the sampling density of the texture.

Original Texture

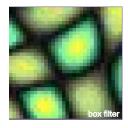
Magnification for Display

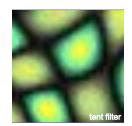
Minification for Display

for which we must use a reconstruction filter

Linear Interpolation

- Tell OpenGL to use a tent filter instead of a box filter.
- · Magnification looks better, but blurry
 - (texture is under-sampled for this resolution)





Spatial Filtering

- Remove the high frequencies which cause artifacts in texture minification.
- Compute a spatial integration over the extent of the pixel
- This is equivalent to convolving the texture with a filter kernel centered at the sample (i.e., pixel center)!
- Expensive to do during rasterization, but an approximation it can be precomputed

projected texture in image plane

box filter in texture plane

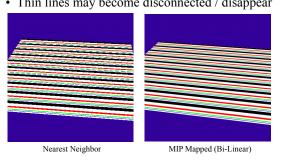
MIP Mapping

Construct a pyramid of images that are pre-filtered and re-sampled at 1/2, 1/4, 1/8, etc., of the original image's sampling

- During rasterization we compute the index of the decimated image that is sampled at a rate closest to the density of our desired sampling rate
- · MIP stands for multum in parvo which means many in a small place

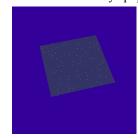
MIP Mapping Example

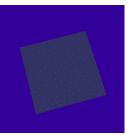
• Thin lines may become disconnected / disappear



MIP Mapping Example

• Small details may "pop" in and out of view

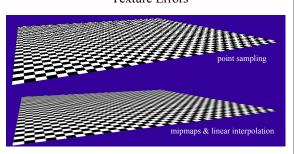




Nearest Neighbor MIP Mapped (Bi-Linear)

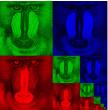
Examples of Aliasing

Texture Errors



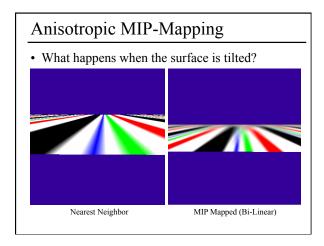
Storing MIP Maps

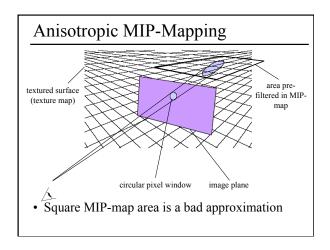
- Can be stored compactly
- Illustrates the 1/3 overhead of maintaining the MIP map



10-level mip map

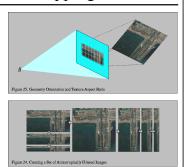
Memory format of a mip map





Anisotropic MIP-Mapping

- We can use different mipmaps for the 2 directions
- Additional extensions can handle non axis-aligned views



Images from http://www.sgi.com/software/opengl/advanced98/notes/node37.html

Questions?

Reading for Friday 4/29: (pick one) "A Practical Model for Subsurface Light Transport", Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001

Reading for Friday 4/29: (pick one)

• "Radiance Caching for Participating Media", Jarosz, Donner, Zwicker, & Jensen, 2008.

