Using Static Analysis for Automated Assignment
Grading in Introductory Programming Classes

Samuel Breese, Rensselaer Polytechnic Institute, breess@rpi.edu
Ana Milanova, Rensselaer Polytechnic Institute, milanova@cs.rpi.edu
Barbara Cutler, Rensselaer Polytechnic Institute, cutler@cs.rpi.edu

Abstract: Student experience in introductory computer science classes can be enhanced by applying static analysis
techniques to automatically grade assignments. At Rensselaer Polytechnic Institute (RPI), introductory computer
science classes (using Python) exceed 650 students in size. As resources are limited, it is infeasible to have teaching
staff individually examine each student’s answer for small in-lecture exercises; however, qualitative data regarding
student code independent from execution is still valuable (and in some cases required) to assess progress. When
static analysis utilities were made available to instructors and integrated with automatic assignment testing,
instructors were able to judge student performance and provide feedback at a scale that would otherwise be
infeasible.

There are clear advantages to applying static analysis techniques in comparison to less sophisticated methods (e.g.
regular-expression based search). For one, students are unable to subvert grading by placing certain keywords within
comments or string literals. Static analysis can also be applied to easily grade students on patterns that would be
nontrivial to detect using a more naive method, for example in enforcing a rule that all member variables of a C++
class must be private, or verifying that a function takes the appropriate number and type of arguments.

Significance and Relevance of Topic: The introductory computer science course at RPI provides students with
basic knowledge of programming concepts demonstrated through the Python programming language. Students are
neither expected nor required to have prior programming experience. In such a foundational class, it is often more
important that students demonstrate sufficient understanding of a concept than that they simply obtain the correct
result. This can be done by administering multiple small exercises during each lecture. For example, early in the
curriculum students are introduced to the “for” looping construct, and some time later they are introduced to the
less-intuitive “while” looping construct. A simple problem might be given during lecture to give students hands-on
experience with this new topic. Students would solve this problem, submit their solutions to Submitty', an
open-source electronic grading platform developed at RPI, and receive a grade. By running each submission,
Submitty can detect programs with the correct output, but previously there was no automated method by which to
determine that students were actually using the new “while” loop: they might simply be solving the problem using
the more intuitive “for” loop. Starting in the Fall 2016 semester, such functionality has been integrated with
Submitty via the introduction of an open-source static analysis framework. Language support for this framework is
now available to instructors in the majority of computer science courses offered at RPI.

These static analysis utilities were made available to instructors through a language-agnostic Python interface, so as
not to require instructors teaching different courses to learn many different tools. This interface wraps lexical
analysis and parsing tools for C, C++, Java, Python 2, and Python 3 developed in-house, giving an instructor access
to token streams and abstract syntax trees for student code using familiar Python data structures. For particularly
common use cases, scripts using this interface to count particular tokens, AST nodes, and function calls are
provided: building upon the previous example, it is trivial for an instructor to distinguish programs using a “while”

! Submitty, Rensselear Center for Open Source Software, http://submitty.org


mailto:breess@rpi.edu
mailto:cutler@cs.rpi.edu
mailto:cutler@cs.rpi.edu

loop and programs using a “for”” loop using the prebuilt script for counting AST nodes. Without such an integrated
toolset, it becomes difficult to apply techniques used in one course to another due to the difference in tooling for
different languages. The framework also serves to enforce a standard across multiple instructors using the same
language: for example, given two C++ classes, one instructor might apply static analysis techniques using the LLVM
compiler toolchain while another might use handwritten Lex/Yacc tools. Even if these two instructors were
essentially performing the same analysis, their efforts would be duplicated and collaboration would be limited. This
situation is avoided entirely by providing a consistent interface to all instructors.

Content: Automatic grading techniques using the framework described were applied to the Fall 2016 Computer
Science 1 class at RPI, a class exceeding 650 students in size and involving 2 lecturers and 11 graduate teaching
assistants. In the first 13 lectures, there were a total of 32 in-class exercises, graded exclusively by the automated
grading system. In 18 of these exercises, instructors used static analysis techniques to enhance grading. Students
received immediate feedback about the correctness of both the program output and adherence to other program
requirements via static analysis. Using this feedback, students were able to correct any issues and make additional
submissions. Static analysis techniques were also applied to each weekly homework assignment to supplement
existing electronic grading and detailed manual TA grading and written feedback (typically comprising 25-50% of
the total homework grade). To emphasize the degree to which this was utilized, there were an average of 7759
submissions to each homework assignment, and an average of 2472 submissions to each in-lecture assignment. It
would clearly be infeasible for teaching staff to facilitate this level of student engagement entirely manually. Similar
techniques were applied on a smaller scale to a C++ class, where analysis was used to prohibit the usage of certain
language features (e.g., “goto” and “auto”).

Feedback from the instructors teaching the introductory course about the newly-available tools has been very
positive. Teaching assistant workload for the mundane portions of homework grading (verifying adherence with
specific assignment requirements) has been was significantly reduced, allowing the TAs to give more detailed and
personalized feedback to each student regarding overall technique and style (e.g., program structure, good use of
comments, and reasonable error checking) rather than focusing on programmatic minutia.

Adding support for the enhanced grading functionality to existing assignments has been eased by the aforementioned
prebuilt scripts allowing an instructor to easily count the occurrences of a specific lexeme, AST node, or function
call. In the majority of instances, instructors simply wanted to determine the existence of a specific number of
applications of a given language feature, which amounted to no more than the addition of a single line in the
automatic grading system assignment configuration file. Although some issues inevitably arose, they were relatively
few, especially given the size of the class, the average volume of submissions, and the unfamiliarity of the students
with the system. This was exacerbated by the class in consideration simultaneously transitioning from Python 2 to
Python 3.

Our poster will contain examples of the instructor configurations required to grade a specific pattern in student code,
showcasing the advantages over a regular-expression based approach by providing student code that will be
correctly graded by static analysis but incorrectly graded by the textual approach. Additionally, as the end of the Fall
2016 semester approaches, more detailed numerical data relating to the number and type of analyses used and the
number of students taking advantage of the enhanced feedback can be obtained and displayed. Furthermore, data
relating to student performance on assignments in comparison to previous semesters (where static analysis was not
available) will be provided in complete form.



