
Using Static Analysis for Automated Assignment
Grading in Introductory Programming Classes

Samuel Breese, Ana Milanova, and Barbara Cutler

Abstract
Student experience in introductory computer science classes can be en-

hanced by applying static analysis techniques to automatically grade as-

signments. Since resources for teaching large introductory programming

courses are limited, it is infeasible to have teaching staff individually exam-

ine each student’s answer for small in-lecture exercises. However, qualita-

tive data regarding student code independent from execution is still valu-

able (and in some cases required) to assess progress. When static analysis

utilities were made available to instructors and integrated with automatic

assignment testing, instructors were able to judge student performance and

provide feedback at a scale that would otherwise be infeasible.

There are clear advantages to applying static analysis techniques in

comparison to less sophisticated methods (e.g. regular-expression based

search). For one, students are unable to subvert grading by placing cer-

tain keywords within comments or string literals. Static analysis can also

be applied to easily grade students on patterns that would be nontrivial

to detect using a more naive method, for example in enforcing a rule that

all member variables of a C++ class must be private, or verifying that a

function takes the appropriate number and type of arguments.

A Motivating Use-Case
• Computer Science I at RPI is very large. Fall 2016 numbers: 650 students,

2 lecturers, and 11 graduate & ∼50 undergraduate TAs.

• Prior programming experience is not a prerequisite.

• Demonstrating knowledge of important concepts is often more impor-

tant than producing the right final answer.

• Small exercises administered during lecture gauge student progress.

• Previously, our automated grading was purely output-based. Enforce-

ment of special requirements was done manually by the TAs (or ignored).

• In Fall 2016, we introduced an easy-to-use static analysis framework.

Design Requirements
• Grading must be completely automatic.

• Instructor setup must be quick and simple.

• Tests should be robust to common student errors.

• Error messages to students should be clear, pointing out what went

wrong and where to look for mistakes.

• Students should not be able to subvert grading requirements.

Examples of Instructor Usage
for vs. while loop in Python This simple code re-writing exercise is

often used early in the semester, to help students learn the somewhat less

intuitive while loop in Python.

(a) Initial code (b) Student rewrite using while

(c) Typical Instructor Configuration

Restricting Use of goto in C++ Distinguishing the files below is not prac-

tical with a simpler approach (e.g., grep):

(d) Student code using goto (e) Student code without goto

Determining Maximum Loop Depth For more complex requirements, in-

structors can use the Python interface rather than using a provided script.

The example below finds the depth of nested loops within student code.

(f) Loop Depth = 1 (g) Loop Depth = 2

(h) Custom Grader to Determine Loop Depth

Results from Fall 2016
• These methods were introduced in the Fall 2016 introductory Computer

Science I course at RPI.

• Students received immediate feedback about specification adherence.

• Students could correct any issues and make additional submissions.

• Infeasible for instructors to facilitate this level of student engagement.

Details of Implementation
• Lexical analysis tool and parser available for C, C++, Python, and Java.

• Instructors use these tools through a language-agnostic Python interface.

• Scripts using this interface are provided for instructor convenience when

dealing with particularly common use cases.

• Different tools on the backend are used for each language, but the

instructor-visible interface is consistent, allowing cross-course sharing of

configuration.

Performance
• At peak load (Thursday at midnight, the typical homework deadline for

multiple courses), wait times for students averaged 15 seconds, despite

thousands of submissions.

• Note the two spikes in usage on Monday and Thursday: these corre-

spond to weekly lectures, demonstrating that students were actively sub-

mitting exercises and receiving feedback mid-lecture.

• Students are given a 24 hours to complete these exercises, explaining the

smaller spikes on Tuesday and Friday.

Instructor Feedback
• Overall, feedback from instructors teaching the introductory course has

been very positive.

• Teaching assistant workload for the mundane portions of homework

grading (verifying adherence with specific assignment requirements) has

been significantly reduced.

• Teaching assistants are free to give more detailed and personalized feed-

back to each student regarding overall technique and style rather than

being forced to focus on programmatic minutia.

Ongoing Work
• Maintenance and bug fixing, security analysis.

• Increased language support.

• Expanded library of grading techniques for ease of use.

• Ensure more instructors are aware of the tool.

Submitty http://submitty.org

Submitty is an open source programming assignment submission system

from the Rensselaer Center for Open Source Software (RCOS), launched by

the Department of Computer Science at Rensselaer Polytechnic Institute.

Related Submitty Publications
• User Experience and Feedback on the RPI Homework Submission Server,

Wong, Sihsobhon, Lindquist, Peveler, Cutler, Breese, Tran, Jung, and

Shaw, SIGCSE 2016 Poster

• A Flexible Late Day Policy Reduces Stress and Improves Learning Tyler,

Peveler, and Cutler, SIGCSE 2017 Poster

• Submitty: An Open Source, Highly Configurable Platform for Grading of

Programming Assignments, Peveler, Tyler, Breese, Cutler, and Milanova,

SIGCSE 2017 Demo Presentation

Acknowledgments
• Red Hat Software

• Rensselaer Center for Open Source (RCOS)

• CSCI 1100 Computer Science I Teaching Staff

•https://github.com/Submitty/AnalysisTools


