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DCEC ∗ (deontic cognitive event calculus) is a multi-sorted quantified modal logic1 that has a well-
defined syntax and a proof calculus. The syntax of the language of DCEC ∗ and the rules of inference for its
proof calculus are shown in Figure 1. DCEC ∗ syntax includes a system of sorts S, a signature f , a grammar
for terms t, and a grammar for sentences φ; these are shown on the left half of the figure. The proof calculus
is based on natural deduction (Jaśkowski 1934), and includes all the introduction and elimination rules for
first-order logic, as well as rules for the modal operators; the rules are listed in the right half of the figure.

The formal semantics for DCEC ∗ is still under development; a semantic account of the wide array of
cognitive and epistemic constructs found in the logic is no simple task — especially because of two self-
imposed constraints: resisting fallback to the standard ammunition of possible-worlds semantics (which for
reasons beyond the scope of the present paper we find manifestly implausible as a technique for formalizing
the meaning of epistemic operators), and resisting the piggybacking of deontic operators on pre-established
logics not expressly created and refined for the purpose of doing justice to moral reasoning in the human
realm.2

Of course, we have informal interpretations for the different “parts of speech” in DCEC ∗: We denote
that agent a knows φ at time t by K(a, t,φ). The operators B and P have a similar informal interpretation for
belief and perception, respectively. D(a, t,holds( f , t ′)) says that the agent a at time t desires that the fluent f
holds at time t ′. The formula S(a,b, t,φ) captures declarative communication of φ from agent a to agent b at
time t. Public declaration of φ at time t by a is denoted by S(a, t,φ). Common-knowledge of φ in the system
at time t is denoted by C(t,φ). Common-knowledge of some proposition φ holds exactly when every agent
knows φ, and every agent knows that every agent knows φ, and so on ad infinitum. Note the restrictions on
the form of I and O. I(a, t,happens(action(a∗,α), t ′)) indicates that the agent a at time t intends to perform
an action of type α at some time t ′; the ∗ operator, written here in postfix form, ensures that this is an
exact self-referential attitude, and not an attitude that happens to hold of the same agent by happenstance.

1Manzano (1996) covers muli-sorted first-order logic (MSL). Details as to how a reduction of intensional logic to MSL so that
automated theorem proving based in MSL can be harnessed is provided in (Arkoudas & Bringsjord 2009).

2Such piggybacking is the main driver of (Horty 2012), in which deontic logic is understood via aligning it with default logic.
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Figure 1: Deontic Cognitive Event Calculus

Syntax

S ::=
Object | Agent | Self @ Agent | ActionType | Action v Event |
Moment | Boolean | Fluent | Numeric

f ::=

action : Agent⇥ActionType ! Action

initially : Fluent ! Boolean

holds : Fluent⇥Moment ! Boolean

happens : Event⇥Moment ! Boolean

clipped : Moment⇥Fluent⇥Moment ! Boolean

initiates : Event⇥Fluent⇥Moment ! Boolean

terminates : Event⇥Fluent⇥Moment ! Boolean

prior : Moment⇥Moment ! Boolean

interval : Moment⇥Boolean

⇤ : Agent ! Self

payoff : Agent⇥ActionType⇥Moment ! Numeric

t ::= x : S | c : S | f (t1 , . . . , tn)

f ::=

p : Boolean | ¬f | f^y | f_y | f ! y | f $ y | 8x : S. f | 9x : S. f

P(a, t,f) | K(a, t,f) | C(t,f) | S(a,b, t,f) | S(a, t,f)

B(a, t,f) | D(a, t,holds( f , t0)) | I(a, t,happens(action(a⇤ ,a), t0))

O(a, t,f,happens(action(a⇤ ,a), t0))

Rules of Inference

C(t,P(a, t,f) ! K(a, t,f))
[R1 ]

C(t,K(a, t,f) ! B(a, t,f))
[R2 ]

C(t,f) t  t1 . . . t  tn

K(a1 , t1 , . . .K(an , tn ,f) . . .)
[R3 ]

K(a, t,f)

f
[R4 ]

t1  t3 , t2  t3

C(t,K(a, t1 ,f1 ! f2) ! (K(a, t2 ,f1) ! K(a, t3 ,f2)))
[R5 ]

t1  t3 , t2  t3

C(t,B(a, t1 ,f1 ! f2) ! (B(a, t2 ,f1) ! B(a, t3 ,f2)))
[R6 ]

t1  t3 , t2  t3

C(t,C(t1 ,f1 ! f2) ! (C(t2 ,f1) ! C(t3 ,f2)))
[R7 ]

C(t,8x. f ! f[x 7! t])
[R8 ]

C(t,f1 $ f2 ! ¬f2 ! ¬f1)
[R9 ]

C(t, [f1 ^ . . .^fn ! f] ! [f1 ! . . . ! fn ! y])
[R10 ]

B(a, t,f) B(a, t,f ! y)

B(a, t,y)
[R11a ]

B(a, t,f) B(a, t,y)

B(a, t,y^f)
[R11b ]

S(s,h, t,f)

B(h, t,B(s, t,f))
[R12 ]

I(a, t,happens(action(a⇤ ,a), t0))

P(a, t,happens(action(a⇤ ,a), t))
[R13 ]

B(a, t,f) B(a, t,O(a⇤ , t,f,happens(action(a⇤ ,a), t0)))
O(a, t,f,happens(action(a⇤ ,a), t0))

K(a, t,I(a⇤ , t,happens(action(a⇤ ,a), t0)))
[R14 ]

f $ y

O(a, t,f,g) $ O(a, t,y,g)
[R15 ]
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This representation closely follows that of Casta˜neda, and a more elaborate account of self-reference in
DCEC ∗can be found in (Bringsjord & Govindarajulu 2013). The latest addition to the calculus is the
ought-to-be dyadic deontic operator O presented in (Goble 2003, McNamara 2010), intended to help dodge
Chisholm’s paradox, which plagues Standard Deontic Logic (SDL).3 O(a, t,φ,happens(action(a∗,α), t ′)) is
to be read as: “if it is the case that a at time t believes φ then that α is obligatory for a and this is known by
a.” The Moment sort is used for representing time-points. We assume that time-points are isomorphic with
N; and function symbols (or functors) +,−; and relation symbols >,<,≥,≤ are available, under standard
interpretations.

DCEC ∗has a classical monotonic view of the knowledge of the world possessed by an agent and views
knowledge to be true and unchanging. This means that if an agent knows φ at some time t, then the agent
will continue to know φ for all time. Beliefs possessed by an agent can change as time passes and events
happen and fluents change, but knowledge remains constant or increases. This view of knowledge underpins
all inference rules that have a knowledge component. For example, [R3] states that if some information φ
is common knowledge at a certain time, then we can derive that an agent knows that at a certain time that
another agent knows at another time, and so on, until finally, that an agent knows φ at a time, with all these
time indexicals occurring later than the moment at which the common knowledge holds. Rule R15 for O is
based on the only rule for the ought-to-be operator in (Goble 2003, McNamara 2010), which can be easily

3An excellent overview of SDL and Chisholm’s Paradox available in the Stanford Encyclopedia of Philosophy; see
http://plato.stanford.edu/entries/logic-deontic.
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and plausibly interpreted as also holding for the ought-to-do case. Rule R14 connects the O operator with
the knowledge and belief operators. The rule is to be informally read as follows: “If it is the case that an
agent believes that the agent ought to α when φ holds at any time, and it is the case that the agent ought to
α when φ, and the agent believes that φ holds at a given time, then the agent knows that the agent intends to
perform action α.”.4

The rule for the communication operator is from the analysis in (Wooldridge 2009, Chapter 7); the
rules for the rest of the modal operators come from (Arkoudas & Bringsjord 2008a) and (Bringsjord &
Govindarajulu 2013). Rules R11a and R11b enable an agent which believes in {φ2, . . . ,φn} to also believe ψ
if {φ1, . . . ,φn} `ψ. Some readers may be uncomfortable with the duo of R11a and R11b, but we have included
them as this is not only realistic but also necessary when agents represent nations.

DCEC ∗ includes the signature of the classic Event Calculus (EC ) (Mueller 2006),5 and the axioms of
EC are assumed to be common knowledge in the system. EC is a first-order calculus that lets one reason
about events that occur in time and their effects on fluents. DCEC ∗ includes, in addition to symbols for
basic arithmetic functions and relations Sar = {0,1,+, .,<,>}, a relevant theory of arithmetic Φarith. The
details vary from application to application; the power of this theory can be altered. This allows us to
model agents that can access numerical propositions and calculations; for example, an agent using simple
utilitarian calculation to ground its decisions. The agents are also assumed to have some basic knowledge
of causality going beyond the EC; this is expressed as common knowledge. These axioms are not pertinent
to the present study; they can be found in (Arkoudas & Bringsjord 2008b).

DCEC ∗ has a set of distinguished constant symbols corresponding to when and by whom the reasoning
is carried out: now is a symbol indicating the current time, and I is a symbol indicating the agent carrying out
the reasoning. These features have not yet been fully developed, but the need for these features is explained
in (Bringsjord & Govindarajulu 2013).
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