Home Work No. 1 Fall 2010 Solutions (problems 2 to 5) .

February 13, 2015

0.1 We give a detailed solution at the end 0.2 a) Proof By Induction of $F_n \ge 2^{0.5n}$: Base case: $F_6=8 \ge 2^3$ Assume the hypothesis is true for $n \le k$ Now for n = k + 1 $F_{k+1} = F_k + F_{k-1}$ $F_{k+1} \ge 2^{0.5k} + 2^{0.5(k-1)}$ $F_{k+1} \ge 2^{0.5(k-1)} (2^{0.5} + 1)$ $F_{k+1} \ge 2^{0.5(k-1)} (1.414 + 1)$ $F_{k+1} \ge 2^{0.5(k-1)} (2.414)$ $F_{k+1} \ge 2^{0.5(k-1)} 2^{2 \times 0.5}$ $F_{k+1} \ge 2^{0.5(k-1)}$

b) Proof By Induction of $F_n \leq 2^{cn}$ Let c = 0.9

Base case $F_0 = 1 \le 2^0$

Assume the hypothesis is true for $n \leq k$

Now for
$$n = k + 1$$

 $F_{k+1} = F_k + F_{k-1}$
 $F_{k+1} \le 2^{0.9k} + 2^{0.9(k-1)}$
 $F_{k+1} \le 2^{0.9(k-1)} (2^{0.9} + 1)$
 $F_{k+1} \le 2^{0.9(k-1)} (1.87 + 1)$
 $F_{k+1} \le 2^{0.9(k-1)} (2.87)$
 $F_{k+1} \le 2^{0.9(k-1)} 2^{2 \times 0.9}$
 $F_{k+1} \le 2^{0.9(k+1)}$
3)
a) $(2^{\log(n)})^{\log(n)} = n^{\log(n)}$ as $2^{\log(n)} = n$
 $n^{\log(n)} = O(n^n)$
Hence $(2^{\log(n)})^{\log(n)} = O(n^{n\log(n)})$

b) $7^{\log(n)} = y$ Taking logs on both sides, we get $\log(n) \log(7) = \log(y)$

$$\log(n)^{\log(7)} = \log(y)$$

 $n^{\log(7)} = y$ taking anti-logairthms

Hence $7^{\log(n)} = \Theta(n^{\log(7)}) = O(n^{\log(7)})$ c) $2^{7log(n)} = 2^{log(n^7)}$

by taking logairthms and anti-logarithms similar to the above part, we get $2^{7log(n)} ~=~ \Theta(n^7) = O(n^7)$

4)

1) swap(100,20),swap(100,40),swap(40,3) - 3 swaps 2) swap(200,40),swap(100,30) - 2 swaps 3) 30,12,15,10 d<b<c<a 5) Input: a<b, c< d. If (a> c) swap(a,c) if (b>d) swap(b,d) if (b>c) swap(b,c)

6.
$$\log(\log(n)), \log(n^{1.5}), n/\log(n), n^{1.5}, n^{\log(n)}, 4^n, n!, 2^{n^2}, 2^{2^n}$$

7 1. $sum = \sum_{i=1}^n \sum_{j=1}^i \sum_{k=1}^j 1$
 $sum = \frac{(n+1)^3}{6} - \frac{n}{6} - \frac{1}{6}$

Running Time of the algorithm is $O(n^3)$ assuming sum takes O(1) time/

- 2. O(mn) assuming multiplication. assuming multiplication takes O(1) time
- 0.1. Solution Please do not take points off for not showing steps

(a) $\frac{f(n)}{g(n)} = \frac{n - 100}{n - 200} \le 201 \therefore f(n) = O(g(n))$ $\frac{g(n)}{f(n)} = \frac{n - 200}{n - 100} \le 1 \therefore f(n) = \Omega(g(n))$ $\therefore f(n) = \Theta(q(n))$ (b) f(n) = O(g(n)), Rule 2 (c) $\frac{f(n)}{g(n)} = \frac{100n + \log n}{n + (\log n)^2} \le 100 \therefore f(n) = O(g(n))$ $\frac{g(n)}{f(n)} = \frac{n + (\log n)^2}{100n + \log n} \le 1 \therefore f(n) = \Omega(g(n))$ $\therefore f(n) = \Theta(q(n))$ (d) $f(n) = \Theta(g(n))$, Rule 1 (e) $f(n) = \Theta(g(n))$, Rule 1 (f) $\log n^2 = 2 \log n$, $f(n) = \Theta(q(n))$, Rule 1 (g) Rule 4 applies to g(n), $f(n) = \Omega(g(n))$, Rule 2 (1.01 > 1) (h) n^2 dominates in f(n), *n* dominates in g(n), $f(n) = \Omega(g(n))$ (i) $f(n) = \Omega(q(n))$, Rule 4 (j) take the log of f(n) and q(n) yields, $f(n) = \log n * \log \log n$ and $g(n) = \log n - \log \log n$, substituting $p = \log(n)$ $\frac{f(n)}{q(n)} = \frac{p * \log p}{p - \log p} \not\leq \infty$ $\frac{g(n)}{f(n)} = \frac{p - \log p}{p * \log p} \le 1 \text{ for large } n \therefore f(n) = \Omega(g(n))$ (k) $f(n) = \Omega(g(n))$, Rule 4 (l) f(n) = O(g(n)), Rule 3 (m) f(n) = O(g(n)), Rule 3 (n) $\frac{f(n)}{g(n)} = \frac{2^n}{2^{n+1}} \le \frac{1}{2} \therefore f(n) = O(g(n))$ $\frac{g(n)}{f(n)} = \frac{2^{(n+1)}}{2^n} \le 2 \therefore f(n) = \Omega(g(n))$ $\therefore f(n) = \Theta(q(n))$ 5

Figure 1: Problem 1

- (o) $f(n) = \Omega(g(n))$, factorial dominates exponentials
- (p) take the log of f(n) and g(n) yeilds, $f(n)=\log n*\log\log n$ and $g(n)=(\log_2 n)^2\log 2,$ substituting p=log(n)

$$\frac{f(n)}{g(n)} = \frac{p * \log p}{p^2 \log 2} \le 1 \therefore f(n) = O(g(n))$$
$$\frac{g(n)}{f(n)} = \frac{p^2 \log 2}{p * \log p} \not\le \infty$$

(q) the series evaluates with the highest term being $n^{k+1}, \, f(n) = \Theta(g(n))$

Figure 2: Problem 1 - continued