Naive Bayes Classifier example

Eric Meisner

November 22, 2003

1 The Classifier

The Bayes Naive classifier selects the most likely classification $V_{n b}$ given the attribute values $a_{1}, a_{2}, \ldots a_{n}$.
This results in:

$$
\begin{equation*}
V_{n b}=\operatorname{argmax}_{v_{j} \in V} P\left(v_{j}\right) \prod P\left(a_{i} \mid v_{j}\right) \tag{1}
\end{equation*}
$$

We generally estimate $P\left(a_{i} \mid v_{j}\right)$ using m-estimates:

$$
\begin{equation*}
P\left(a_{i} \mid v_{j}\right)=\frac{n_{c}+m p}{n+m} \tag{2}
\end{equation*}
$$

where:

$$
\begin{aligned}
& n=\text { the number of training examples for which } v=v_{j} \\
& n_{c}=\text { number of examples for which } v=v_{j} \text { and } a=a_{i} \\
& p=\quad \text { a priori estimate for } P\left(a_{i} \mid v_{j}\right) \\
& m=\quad \text { the equivalent sample size }
\end{aligned}
$$

2 Car theft Example

Attributes are Color, Type , Origin, and the subject, stolen can be either yes or no.

2.1 data set

Example No.	Color	Type	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	SUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

2.2 Training example

We want to classify a Red Domestic SUV. Note there is no example of a Red Domestic SUV in our data set. Looking back at equation (2) we can see how to compute this. We need to calculate the probabilities

```
P(Red|Yes), P(SUV|Yes), P(Domestic|Yes) ,
P(Red|No) , P(SUV |No), and P(Domestic|No)
```

and multiply them by $\mathrm{P}(\mathrm{Yes})$ and $\mathrm{P}(\mathrm{No})$ respectively. We can estimate these values using equation (3).

Yes:
Red:
$\mathrm{n}=5$
n_c= 3
$p=.5$
$m=3$
SUV:
$\mathrm{n}=5$
n_c = 1
$p=.5$
$\mathrm{m}=3$
Domestic:
$\mathrm{n}=5$
n_c $=2$
$p=.5$
$m=3$

No:
Red:

$$
\begin{aligned}
& \mathrm{n}=5 \\
& \mathrm{n} _\mathrm{c}=2 \\
& \mathrm{p}=.5 \\
& \mathrm{~m}=3
\end{aligned}
$$

SUV:
$\mathrm{n}=5$
n_c $=3$
$p=.5$
$\mathrm{m}=3$
Domestic:
$\mathrm{n}=5$
n_c $=3$
$p=.5$
$\mathrm{m}=3$

Looking at $P(\operatorname{Red} \mid Y e s)$, we have 5 cases where $v_{j}=$ Yes, and in 3 of those cases $a_{i}=$ Red. So for $P(\operatorname{Red} \mid Y e s), n=5$ and $n_{c}=3$. Note that all attribute are binary (two possible values). We are assuming no other information so, $p=1 /$ (number-of-attribute-values) $=0.5$ for all of our attributes. Our m value is arbitrary, (We will use $m=3$) but consistent for all attributes. Now we simply apply eqauation (3) using the precomputed values of n, n_{c}, p, and m.

$$
\begin{array}{rlr}
P(\text { Red } \mid Y e s)=\frac{3+3 * .5}{5+3}=.56 & P(\text { Red } \mid N o)=\frac{2+3 * .5}{5+3}=.43 \\
P(S U V \mid Y e s)=\frac{1+3 * .5}{5+3}=.31 & P(S U V \mid N o)=\frac{3+3 * .5}{5+3}=.56 \\
P(\text { Domestic } \mid Y e s) & =\frac{2+3 * .5}{5+3}=.43 & P(\text { Domestic } \mid N o)=\frac{3+3 * .5}{5+3}=.56
\end{array}
$$

We have $P(Y e s)=.5$ and $P(N o)=.5$, so we can apply equation (2). For $v=Y e s$, we have

```
P(Yes) * P(Red | Yes) * P(SUV | Yes) * P(Domestic|Yes)
    = . 5 * . 56 *. .31 *. 43 = . 037
```

and for $v=N o$, we have

```
P(No) * P(Red | No) * P(SUV | No) * P (Domestic | No)
    =.5 * . 43 * . 56 * . 56 = . 069
```

Since $0.069>0.037$, our example gets classified as ${ }^{\prime} \mathrm{NO}^{\prime}$

