
1

C. Varela 1

Distributed (Systems)
Programming

Universal Actors, SALSA, World-Wide Computer

Carlos Varela
Rennselaer Polytechnic Institute

November 6, 2006

C. Varela 2

Worldwide Computing

• Distributed computing over the Internet.
• Access to large number of processors offsets slow

communication and reliability issues.
• Seeks to create a platform for many applications.

C. Varela 3

Overview of
programming distributed systems

• It is harder than concurrent programming!
• Yet unavoidable in today’s information-oriented society, e.g.:

– Internet
– Web services
– Grid computing

• Communicating processes with independent address spaces
• Limited network performance

– Orders of magnitude difference between WAN, LAN, and single machine
communication.

• Localized heterogeneous resources, e.g, I/O, specialized devices.
• Partial failures, e.g. hardware failures, network disconnection
• Openness:  creates security, naming, composability issues.

C. Varela 4

Actors/SALSA Revisited
• Actor Model

– A reasoning framework to model concurrent
computations

– Programming abstractions for distributed open
systems

G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

• SALSA
– Simple Actor Language System and

Architecture
– An actor-oriented language for mobile and

internet computing
– Programming abstractions for internet-based

concurrency, distribution, mobility, and
coordination

C. Varela and G. Agha, “Programming dynamically reconfigurable
open systems with SALSA”, ACM SIGPLAN Notices, OOPSLA
2001 Intriguing Technology Track, 36(12), pp 20-34.

C. Varela 5

World-Wide Computer (WWC)

• Worldwide computing platform.
• Provides a run-time system for universal actors.
• Includes naming service implementations.
• Remote message sending protocol.
• Support for universal actor migration.

C. Varela 6

Abstractions for Worldwide
Computing

• Universal Actors, a new abstraction provided to guarantee unique actor
names across the Internet.

• Theaters, extended Java virtual machines to provide execution
environment and network services to universal actors:

– Access to local resources.
– Remote message sending.
– Migration.

• Naming service, to register and locate universal actors, transparently
updated upon universal actor creation, migration, recollection.



2

C. Varela 7

Universal Naming

• Consists of human readable names.
• Provides location transparency to actors.
• Name to location mappings efficiently updated as actors

migrate.

C. Varela 8

Universal Actor Naming
• UAN servers provide mapping between static names and

dynamic locations.
– Example:

         uan://wwc.cs.rpi.edu/cvarela/calendar

Name server
address and

port.

Actor name.

C. Varela 9

Universal Actors

• Universal Actors extend the actor model by associating a
universal name and a location with the actor.

• Universal actors may migrate between theaters and the
name service keeps track of their current location.

C. Varela 10

Universal Actor Implementation

collection of
objects

mailbox

Thread

UAN UAL

Theater

C. Varela 11

WWC Theaters

Theater address
and port.

Actor location.

C. Varela 12

WWC Theaters

• Theaters provide an execution environment for actors.
• Provide a layer beneath actors for message passing and

migration.
• Example locator:

                      rmsp://wwc.cs.rpi.edu/calendarInstance10

Theater address
and port.

Actor location.



3

C. Varela 13

Environmental Actors

• Theaters provide access to environmental actors.
• Environmental actors perform actions specific to the

theater and are not mobile.
• Include standard input, output and error stream actors.

C. Varela 14

Remote Message Sending Protocol

• Messages between remote actors are sent using the Remote
Message Sending Protocol (RMSP).

• RMSP is implemented using Java object serialization.
• RMSP protocol is used for both message sending and actor

migration.
• When an actor migrates, its locator (UAL) changes but its

name (UAN) does not.

C. Varela 15

Universal Actor Naming Protocol

C. Varela 16

Universal Actor Naming Protocol

• UANP includes messages for:

– Binding actors to UAN, UAL pairs
– Finding the locator of a universal actor given its UAN
– Updating the locator of a universal actor as it migrates
– Removing a universal actor entry from the naming service

• SALSA programmers need not use UANP directly in
programs.  UANP messages are transparently sent by
WWC run-time system.

C. Varela 17

UANP Implementations

• Default naming service implementation stores UAN to UAL mapping in name
servers as defined in UANs.

– Name server failures may induce universal actor unreachability.

• Distributed (Chord-based) implementation uses consistent hashing and a ring
of connected servers for fault-tolerance.  For more information, see:

Camron Tolman and Carlos Varela. A Fault-Tolerant Home-Based Naming Service
For Mobile Agents. In Proceedings of the XXXI Conferencia Latinoamericana de
Informática (CLEI), Cali, Colombia, October 2005.

Tolman C. A Fault-Tolerant Home-Based Naming Service for Mobile Agents. Master's
Thesis, Rensselaer Polytechnic Institute, April 2003.

C. Varela 18

SALSA Language Support for Worldwide
Computing

• SALSA provides linguistic abstractions for:

– Universal naming (UAN & UAL).
– Remote actor creation.
– Message sending.
– Migration.
– Coordination.

• SALSA-compiled code closely tied to WWC run-time platform.



4

C. Varela 19

Universal Actor Creation

• To create an actor locally

TravelAgent a = new TravelAgent();

• To create an actor with a specified UAN and UAL:

TravelAgent a = new TravelAgent() at (uan, ual);

• At current location with a UAN:

TravelAgent a = new TravelAgent() at (uan);

C. Varela 20

Message Sending

TravelAgent a = new TravelAgent();

a <- book( flight );

C. Varela 21

Remote Message Sending

• Obtain a remote actor reference by name.

TravelAgent a = (TravelAgent)
TravelAgent.getReferenceByName(“uan://myhost
/ta”);

a <- printItinerary();

C. Varela 22

Reference Cell Service Example

module examples.cell;

behavior Cell implements ActorService{
Object content;

Cell(Object initialContent) {
         content = initialContent;
   }

Object get() {
standardOutput <- println (“Returning:”+content);
return content;

}

void set(Object newContent) {
standardOutput <- println (“Setting:”+newContent);
content = newContent;

}
}

C. Varela 23

Reference Cell Client Example

module examples.cell;

behavior GetCellValue {

void act( String[] args ) {
      if (args.length != 1){

standardOutput <- println(“Usage:
  salsa examples.cell.GetCellValue <CellUAN>”);
return;

   }

   Cell c = (Cell)
Cell.getReferenceByName(new UAN(args[0]));

   standardOutput <- print(“Cell Value”) @
   c <- get() @
   standardOutput <- println(token);

   }
}

C. Varela 24

Migration

• Obtaining a remote actor reference and migrating
the actor.

 TravelAgent a = (TravelAgent)
TravelAgent.getReferenceByName

(“uan://myhost/ta”);

a <- migrate( “rmsp://yourhost/travel” ) @
a <- printItinerary();



5

C. Varela 25

Moving Cell Tester Example
module examples.cell;

behavior MovingCellTester {

 void act( String[] args ) {

      if (args.length != 3){
standardOutput <- println(“Usage:
  salsa examples.cell.MovingCellTester <UAN> <UAL1> <UAL2>”);
return;

  }

  Cell c = new Cell(“Hello”) at (new UAN(args[0]), new UAL(args[1]));

      standardOutput <- print( ”Initial Value:” ) @
      c <- get() @ standardOutput <- println( token ) @
      c <- set(“World”) @
      standardOutput <- print( ”New Value:” ) @
      c <- get() @ standardOutput <- println( token ) @
      c <- migrate(args[2]) @

  c <- set(“New World”) @
      standardOutput <- print( ”New Value at New Location:” ) @
      c <- get() @ standardOutput <- println( token );
   }
}

C. Varela 26

Agent Migration Example

behavior Migrate {

   void print() {
      standardOutput<-println( "Migrate actor is here." );
   }

   void act( String[] args ) {

      if (args.length != 3) {
        standardOutput<-println("Usage: salsa migration.Migrate  <UAN> <srcUAL>

<destUAL>");
        return;
      }

        UAN uan = new UAN(args[0]);
        UAL ual = new UAL(args[1]);

        Migrate  migrateActor = new Migrate() at (uan, ual);

        migrateActor<-print() @
        migrateActor<-migrate( args[2] ) @
        migrateActor<-print();
   }
}

C. Varela 27

Migration Example

• The program must be given valid universal actor name and
locators.
– Appropriate name services and theaters must be running.

• After remotely creating the actor. It sends the print
message to itself before migrating to the second theater
and sending the message again.

C. Varela 28

Compilation and Execution

$ java SalsaCompiler demo/Migrate.salsa
SALSA Compiler Version 1.0:  Reading from file demo/Migrate.salsa . .
.
SALSA Compiler Version 1.0:  SALSA program parsed successfully.
SALSA Compiler Version 1.0:  SALSA program compiled successfully.
$ javac demo/Migrate.java
$ java demo.Migrate
$ Usage: java migration.Migrate <uan> <ual> <ual>

• Compile Migrate.salsa file into Migrate.java.
• Compile Migrate.java file into Migrate.class.
• Execute Name Server
• Execute Theater 1 and Theater 2 Environments
• Execute Migrate in any computer

C. Varela 29

Migration Example

theater
1

theater
2

The actor will print "Migrate actor is
here." at theater 1 then at theater 2.

UAN
Server

C. Varela 30

World Migrating Agent Example

150-160 ms
240-250 ms
3-7 s
25-30 s

LAN minimal actor migration
LAN 100Kb actor migration
WAN minimal actor migration
WAN 100Kb actor migration

148 us
30-60 ms
2-3 s

Local message sending
LAN message sending
WAN message sending

386usLocal actor creation

Sparc 20Solaris 2.6 JDK 1.1.6Tokyo, Japansolar.isr.co.jp

Pentium II 350MhzLinux 2.2.5 JDK 1.2pre2Paris, Francevulcain.ecoledoc.lip6.fr

Ultra 2Solaris 2.5.1 JDK 1.1.6Urbana IL, USAyangtze.cs.uiuc.edu

ProcessorOS/JVMLocationHost



6

C. Varela 31

Address Book Service

module examples.addressbook;

behavior AddressBook implements ActorService {

Hashtable name2email;
AddressBook() {

         name2email = new HashTable();
   }

String getName(String email) { … }
String getEmail(String name) { … }
boolean addUser(String name, String email) { … }

void act( String[] args ) {
      if (args.length != 0){

standardOutput<-println(“Usage: salsa -Duan=<uan> -Dual=<ual>
examples.addressbook.AddressBook”);

   }
   }
}

C. Varela 32

Address Book Add User
Example

module examples.addressbook;

behavior AddUser {
void act( String[] args ) {

      if (args.length != 3){
standardOutput<-println(“Usage: salsa
  examples.addressbook.AddUser <BookUAN> <Name> <Email>”);
return;

   }
   AddressBook book = (AddressBook)

AddressBook.getReferenceByName(new UAN(args[0]));
   book<-addUser(args(1), args(2));

   }
}

C. Varela 33

Address Book Get Email
Example

module examples.addressbook;

behavior GetEmail {
void act( String[] args ) {

      if (args.length != 2){
standardOutput <- println(“Usage: salsa
  examples.addressbook.GetEmail <BookUAN> <Name>”);
return;

   }
   getEmail(args(0),args(1));
}

void getEmail(String uan, String name){
   AddressBook book = (AddressBook)

AddressBook.getReferenceByName(uan);
   standardOutput <- print(name + “’s email: “) @
   book <- getEmail(name) @
   standardOutput <- println(token);
}

}

C. Varela 34

Address Book Migrate Example

module examples.addressbook;

behavior MigrateBook {
void act( String[] args ) {

      if (args.length != 2){
standardOutput<-println(“Usage: salsa
  examples.addressbook.Migrate <BookUAN> <NewUAL>”);
return;

   }
   AddressBook book = (AddressBook)

AddressBook.getReferenceByName(new UAN(args[0]));
   book<migrate(args(1));

   }
}

C. Varela 35

Middleware for Autonomous
Computing

• Middleware
– A software layer between distributed applications and

operating systems.
– Alleviates application programmers from directly dealing

with distribution issues
• Heterogeneous hardware/O.S.s
• Load balancing
• Fault-tolerance
• Security
• Quality of service

• Internet Operating System (IOS)
– A decentralized framework for adaptive, scalable execution
– Modular architecture to evaluate different distribution and

reconfiguration strategies

K. El Maghraoui, T. Desell, B. Szymanski, and C. Varela, “The Internet Operating System:
Middleware for Adaptive Distributed Computing”,  International Journal of High
Performance Computing and Applications, to appear 2006.

K. El Maghraoui, T. Desell, B. Szymanski, J. Teresco and C. Varela, “Towards a Middleware
Framework for Dynamically Reconfigurable Scientific Computing”,  Grid Computing and
New Frontiers of High Performance Processing,  Elsevier 2005.

T. Desell, K. El Maghraoui, and C. Varela, “Load Balancing of Autonomous Actors over Dynamic
Networks”, HICSS-37 Software Technology Track, Hawaii, January 2004. 10pp.

C. Varela 36

World-Wide Computer
Architecture

• SALSA application layer
– Programming language constructs for actor

communication, migration, and coordination.

• IOS middleware layer
– A Resource Profiling Component

• Captures information about actor and network
topologies and available resources

– A Decision Component
• Takes migration, split/merge, or replication

decisions based on profiled information
– A Protocol Component

• Performs communication between nodes in
the middleware system

• WWC run-time layer
– Theaters provide runtime support for actor execution and

access to local resources
– Pluggable transport, naming, and messaging services



7

C. Varela 37

Actor Garbage Collection

• Implemented since SALSA 1.0 using pseudo-root
approach.

• Includes distributed cyclic garbage collection.
• For more details, please see:

Wei-Jen Wang and Carlos A. Varela. Distributed Garbage Collection for Mobile
Actor Systems: The Pseudo Root Approach. In Proceedings of the First
International Conference on Grid and Pervasive Computing (GPC 2006),
Taichung, Taiwan, May 2006. Springer-Verlag LNCS.

Wei-Jen Wang and Carlos A. Varela. A Non-blocking Snapshot Algorithm for
Distributed Garbage Collection of Mobile Active Objects. Technical report
06-15, Dept. of Computer Science, R.P.I., October 2006. Note: Submitted to
IEEE TPDS.

C. Varela 38

Distributed Systems Visualization

• Generic online Java-based distributed systems
visualization tool

• Uses a declarative Entity Specification Language (ESL)
• Instruments byte-code to send events to visualization layer.
• For more details, please see:

T. Desell, H. Iyer, A. Stephens, and C. Varela. OverView: A Framework for
Generic Online Visualization of Distributed Systems. In Proceedings of the
European Joint Conferences on Theory and Practice of Software (ETAPS
2004), eclipse Technology eXchange (eTX) Workshop, Barcelona, Spain,
March 2004.

C. Varela 39

Exercises

66. How would you implement the join continuation linguistic
abstraction considering different potential distributions of its
participating actors?

67. Download and execute the Agent.salsa example.

68. *Modify the lock example to include a wait/notify protocol, as
opposed to “busy-waiting” (or rather “busy-asking”).

69. *VRH Exercise 11.11.3 (pg 746).  Implement the example using
SALSA/WWC.


