
1

C. Varela; Adapted from S. Haridi and P. Van Roy 1

Declarative Concurrency
 Lazy Execution (VRH 4.5)

Carlos Varela
RPI

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

November 30, 2006

C. Varela; Adapted from S. Haridi and P. Van Roy 2

Lazy evaluation
• The default functions in Oz are evaluated eagerly (as soon

as they are called)
• Another way is lazy evaluation where a computation is

done only when the result is needed

declare
fun lazy {Ints N}
 N|{Ints N+1}
end

• Calculates the infinite list:
0 | 1 | 2 | 3 | ...

C. Varela; Adapted from S. Haridi and P. Van Roy 3

Lazy evaluation (2)
• Write a function that computes as

many rows of Pascal’s triangle as
needed

• We do not know how many
beforehand

• A function is lazy if it is evaluated
only when its result is needed

• The function PascalList is evaluated
when needed

fun lazy {PascalList Row}

 Row | {PascalList

 {AddList

 Row

 {ShiftRight Row}}}

end

C. Varela; Adapted from S. Haridi and P. Van Roy 4

Lazy evaluation (3)
• Lazy evaluation will avoid

redoing work if you decide first
you need the 10th row and later
the 11th row

• The function continues where it
left off

declare

L = {PascalList [1]}

{Browse L}

{Browse L.1}

{Browse L.2.1}

L<Future>

[1]

[1 1]

C. Varela; Adapted from S. Haridi and P. Van Roy 5

Lazy execution
• Without lazyness, the execution order of each thread

follows textual order, i.e., when a statement comes as the
first in a sequence it will execute, whether or not its results
are needed later

• This execution scheme is called eager execution, or
supply-driven execution

• Another execution order is that a statement is executed
only if its results are needed somewhere in the program

• This scheme is called lazy evaluation, or demand-driven
evaluation (some languages use lazy evaluation by default,
e.g., Haskell)

C. Varela; Adapted from S. Haridi and P. Van Roy 6

Example
B = {F1 X}
C = {F2 Y}
D = {F3 Z}
A = B+C

• Assume F1, F2 and F3 are lazy functions
• B = {F1 X} and C = {F2 Y} are executed only if and when

their results are needed in A = B+C
• D = {F3 Z} is not executed since it is not needed

2

C. Varela; Adapted from S. Haridi and P. Van Roy 7

Example

• In lazy execution, an
operation suspends until its
result are needed

• The suspended operation is
triggered when another
operation needs the value
for its arguments

• In general multiple
suspended operations could
start concurrently

B = {F1 X} C = {F2 Y}

A = B+C

Demand

C. Varela; Adapted from S. Haridi and P. Van Roy 8

Example II

• In data-driven execution,
an operation suspends until
the values of its arguments
results are available

• In general the suspended
computation could start
concurrently

B = {F1 X} C = {F2 Y}

A = B+C

Data driven

C. Varela; Adapted from S. Haridi and P. Van Roy 9

Using Lazy Streams
fun {Sum Xs A Limit}

 if Limit>0 then

 case Xs of X|Xr then

 {Sum Xr A+X Limit-1}

 end

 else A end

end

local Xs S in

 Xs={Ints 0}

 S={Sum Xs 0 1500}

 {Browse S}

end

C. Varela; Adapted from S. Haridi and P. Van Roy 10

How does it work?
 fun {Sum Xs A Limit}

 if Limit>0 then

 case Xs of X|Xr then

 {Sum Xr A+X Limit-1}

 end

 else A end

end

fun lazy {Ints N}

 N | {Ints N+1}

end

local Xs S in

 Xs = {Ints 0}

 S={Sum Xs 0 1500}

 {Browse S}

end

C. Varela; Adapted from S. Haridi and P. Van Roy 11

Improving throughput
• Use a lazy buffer
• It takes a lazy input stream In and an integer N, and

returns a lazy output stream Out
• When it is first called, it first fills itself with N elements by

asking the producer
• The buffer now has N elements filled
• Whenever the consumer asks for an element, the buffer in

turn asks the producer for another element

C. Varela; Adapted from S. Haridi and P. Van Roy 12

The buffer example

producer buffer consumer

N

producer buffer consumer

N

3

C. Varela; Adapted from S. Haridi and P. Van Roy 13

The buffer
fun {Buffer1 In N}
 End={List.drop In N}

 fun lazy {Loop In End}
 In.1|{Loop In.2 End.2}
 end
in
 {Loop In End}
end

Traversing the In stream,
forces the producer to emit
N elements

C. Varela; Adapted from S. Haridi and P. Van Roy 14

The buffer II
fun {Buffer2 In N}
 End = thread

 {List.drop In N}
 end

 fun lazy {Loop In End}
 In.1|{Loop In.2 End.2}
 end
in
 {Loop In End}
end

Traversing the In stream,
forces the producer to emit
N elements and at the same
time serves the consumer

C. Varela; Adapted from S. Haridi and P. Van Roy 15

The buffer III
fun {Buffer3 In N}
 End = thread

 {List.drop In N}
 end

 fun lazy {Loop In End}
 E2 = thread End.2 end

 In.1|{Loop In.2 E2}
 end
in
 {Loop In End}
end

Traverse the In stream, forces
the producer to emit N elements
and at the same time serves the
consumer, and requests the next
element ahead

C. Varela; Adapted from S. Haridi and P. Van Roy 16

Larger Example:
The Sieve of Eratosthenes

• Produces prime numbers
• It takes a stream 2...N, peals off 2 from the rest of the stream
• Delivers the rest to the next sieve

Sieve

Filter Sieve

Xs

Xr

X

Ys
Zs

X|Zs

C. Varela; Adapted from S. Haridi and P. Van Roy 17

Lazy Sieve
fun lazy {Sieve Xs}
 X|Xr = Xs in
 X | {Sieve {LFilter

 Xr
 fun {$ Y} Y mod X \= 0 end
 }}

end

fun {Primes} {Sieve {Ints 2}} end

C. Varela; Adapted from S. Haridi and P. Van Roy 18

Lazy Filter
For the Sieve program we need a lazy filter

fun lazy {LFilter Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 if {F X} then X|{LFilter Xr F} else {LFilter Xr F} end
 end
end

4

C. Varela; Adapted from S. Haridi and P. Van Roy 19

Define streams implicitly

• Ones = 1 | Ones
• Infinite stream of

ones

1

cons

Ones

C. Varela; Adapted from S. Haridi and P. Van Roy 20

Define streams implicitly

• Xs = 1 | {LMap Xs
 fun {$ X} X+1 end}

• What is Xs ?

1

cons

+1

Xs?

C. Varela; Adapted from S. Haridi and P. Van Roy 21

The Hamming problem
• Generate the first N elements of stream of integers of the

form: 2a 3b5c with a,b,c ≥ 0 (in ascending order)

*3

*2

*5

C. Varela; Adapted from S. Haridi and P. Van Roy 22

The Hamming problem
• Generate the first N elements of stream of integers of the

form: 2a 3b5c with a,b,c ≥ 0 (in ascending order)

*3

*2

*5

Merge

C. Varela; Adapted from S. Haridi and P. Van Roy 23

The Hamming problem
• Generate the first N elements of stream of integers of the

form: 2a 3b5c with a,b,c ≥ 0 (in ascending order)

*3

*2

*5

Merge

1

cons

H

C. Varela; Adapted from S. Haridi and P. Van Roy 24

Lazy File Reading
fun {ToList FO}

fun lazy {LRead} L T in
if {File.readBlock FO L T} then
 T = {LRead}
else T = nil {File.close FO} end
L

end
{LRead}

end
• This avoids reading the whole file in memory

5

C. Varela; Adapted from S. Haridi and P. Van Roy 25

List Comprehensions
• Abstraction provided in lazy functional languages that

allows writing higher level set-like expressions
• In our context we produce lazy lists instead of sets
• The mathematical set expression

– {x*y | 1≤x ≤10, 1≤y ≤x}
• Equivalent List comprehension expression is

– [X*Y | X = 1..10 ; Y = 1..X]
• Example:

– [1*1 2*1 2*2 3*1 3*2 3*3 ... 10*10]

C. Varela; Adapted from S. Haridi and P. Van Roy 26

List Comprehensions
• The general form is
• [f(x,y, ...,z) | x ← gen(a1,...,an) ; guard(x,...)

 y ← gen(x, a1,...,an) ; guard(y,x,...)
....

]
• No linguistic support in Mozart/Oz, but can be easily

expressed

C. Varela; Adapted from S. Haridi and P. Van Roy 27

Example 1
• z = [x#x | x ← from(1,10)]
• Z = {LMap {LFrom 1 10} fun{$ X} X#X end}

• z = [x#y | x ← from(1,10), y ← from(1,x)]
• Z = {LFlatten

 {LMap {LFrom 1 10}
 fun{$ X} {LMap {LFrom 1 X}
 fun {$ Y} X#Y end
 }

 end
 }
 }

C. Varela; Adapted from S. Haridi and P. Van Roy 28

Example 2
• z = [x#y | x ← from(1,10), y ← from(1,x), x+y≤10]
• Z ={LFilter

{LFlatten
 {LMap {LFrom 1 10}

 fun{$ X} {LMap {LFrom 1 X}
 fun {$ Y} X#Y end
 }

 end
 }

 }
 fun {$ X#Y} X+Y=<10 end} }

C. Varela; Adapted from S. Haridi and P. Van Roy 29

Implementation of lazy execution

〈s〉::= skip empty statement
 | ...

| thread 〈s1〉 end thread creation
| {ByNeed fun{$} 〈e〉 end 〈x〉} by need statement

The following defines the syntax of a statement, 〈s〉 denotes a statement

zero arity
function

variable

C. Varela; Adapted from S. Haridi and P. Van Roy 30

Implementation

some statement

f
x

{ByNeed fun{$} 〈e〉 end X,E }
stack

store

A function value is created in the
store (say f)
the function f is associated with
the variable x
execution proceeds immediately
to next statement

f

6

C. Varela; Adapted from S. Haridi and P. Van Roy 31

Implementation

some statement

f
x : f

{ByNeed fun{$} 〈e〉 end X,E }
stack

store

A function value is created in the
store (say f)
the function f is associated with
the variable x
execution proceeds immediately
to next statement

f

(fun{$} 〈e〉 end X,E)

C. Varela; Adapted from S. Haridi and P. Van Roy 32

Accessing the ByNeed variable
• X = {ByNeed fun{$} 111*111 end} (by thread T0)

• Access by some thread T1
– if X > 1000 then {Browse hello#X} end

or

– {Wait X}
– Causes X to be bound to 12321 (i.e. 111*111)

C. Varela; Adapted from S. Haridi and P. Van Roy 33

Implementation

Thread T1
1. X is needed
2. start a thread T2 to execute F (the function)
3. only T2 is allowed to bind X

Thread T2

1. Evaluate Y = {F}
2. Bind X the value Y
3. Terminate T2

4. Allow access on X

C. Varela; Adapted from S. Haridi and P. Van Roy 34

Lazy functions
fun lazy {Ints N}

N | {Ints N+1}
end

fun {Ints N}
fun {F} N | {Ints N+1} end

in {ByNeed F}
end

C. Varela; Adapted from S. Haridi and P. Van Roy 35

Exercises

90. Write a lazy append list operation LazyAppend. Can
you also write LazyFoldL? Why or why not?

91. Exercise VRH 4.11.10 (pg 341)
92. *Exercise VRH 4.11.13 (pg 342)
93. *Exercise VRH 4.11.17 (pg 342)

