
1

C. Varela; Adapted from S. Haridi and P. Van Roy 1

Concurrent Object-Oriented Programming
 Java Concurrency (VRH 8.6)

Objects, Active Objects (VRH 7.2,7.8)

Carlos Varela
RPI

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

October 30, 2006

C. Varela; Adapted from S. Haridi and P. Van Roy 2

Concurrent Programming in Java
• Java is multi-threaded.
• Two ways to create new threads:

– Extend java.lang.Thread
• Overwrite “run()” method.

– Implement Runnable interface
• Include a “run()” method in your class.

• Starting a thread
– new MyThread().start();
– new Thread(runnable).start();

C. Varela; Adapted from S. Haridi and P. Van Roy 3

The synchronized Statement
• To ensure only one thread can run a block of code, use

synchronized:

synchronized (object) {
 // critical code here
}

• Every object contains an internal lock for synchronization.

C. Varela; Adapted from S. Haridi and P. Van Roy 4

synchronized as a modifier

• You can also declare a method as synchronized:

synchronized int blah(String x) {
 // blah blah blah
}

 equivalent to:

int blah(String x) {
 synchronized (this) {
 // blah blah blah
 }
}

C. Varela; Adapted from S. Haridi and P. Van Roy 5

Object-Oriented Programming in
Oz

The class Counter has the syntactic form

class Counter
 attr val
 meth display
 {Browse @val}
 end
 meth inc(Value)
 val := @val + Value
 end
 meth init(Value)
 val := Value
 end
end

C. Varela; Adapted from S. Haridi and P. Van Roy 6

Attributes of Classes

The class Counter has the syntactic form

class Counter
 attr val
 meth display
 {Browse @val}
 end
 meth inc(Value)
 val := @val + Value
 end
 meth init(Value)
 val := Value
 end
end

val is an attribute:
a modifiable cell
that is accessed by the
atom val

2

C. Varela; Adapted from S. Haridi and P. Van Roy 7

Attributes of classes
The class Counter has the syntactic form

class Counter
 attr val
 meth display
 {Browse @val}
 end
 meth inc(Value)
 val := @val + Value
 end
 meth init(Value)
 val := Value
 end
end

the attribute val
is accessed by the
operator @val

C. Varela; Adapted from S. Haridi and P. Van Roy 8

Attributes of classes
The class Counter has the syntactic form

class Counter
 attr val
 meth display
 {Browse @val}
 end
 meth inc(Value)
 val := @val + Value
 end
 meth init(Value)
 val := Value
 end
end

the attribute val
is assigned by the
operator :=
as val := ...

C. Varela; Adapted from S. Haridi and P. Van Roy 9

Methods of classes
The class Counter has the syntactic form

class Counter
 attr val
 meth display
 {Browse @val}
 end
 meth inc(Value)
 val := @val + Value
 end
 meth init(Value)
 val := Value
 end
end

methods
are statements
method head is a
record (tuple) pattern

C. Varela; Adapted from S. Haridi and P. Van Roy 10

Concurrency and state
are tough when used together

• Execution consists of multiple threads, all executing
independently and all using shared memory

• Because of interleaving semantics, execution happens as if
there was one global order of operations

• Assume two threads and each thread does k operations.
Then the total number of possible interleavings is
This is exponential in k.

• One can program by reasoning on all possible
interleavings, but this is extremely hard. What do we do?

2k
k()

C. Varela; Adapted from S. Haridi and P. Van Roy 11

Concurrent stateful model
〈s〉 ::= skip empty statement
 | 〈x〉 = 〈y〉 variable-variable binding

| 〈x〉 = 〈v〉 variable-value binding
| 〈s1〉 〈s2〉 sequential composition
| local 〈x〉 in 〈s1〉 end declaration
| proc { 〈x〉 〈y1〉 … 〈yn〉 } 〈s1〉 end procedure creation
| if 〈x〉 then 〈s1〉 else 〈s2〉 end conditional
| { 〈x〉 〈y1〉 … 〈yn〉 } procedure application
| case 〈x〉 of 〈pattern〉 then 〈s1〉 else 〈s2〉 end pattern matching
| {NewName 〈x〉 } name creation
| thread 〈s〉 end thread creation
| {ByNeed 〈x〉 〈y〉 } trigger creation
| try 〈s1〉 catch 〈x〉 then 〈s2〉 end exception context
| raise 〈x〉 end raise exception
| {NewCell 〈x〉 〈y〉 } cell creation
| {Exchange 〈x〉 〈y〉 〈z〉 } cell exchange

C. Varela; Adapted from S. Haridi and P. Van Roy 12

Why not use a simpler model?
• The concurrent declarative model is much simpler

– Programs give the same results as if they were sequential, but they give the results
incrementally

• Why is this model so easy?
– Because dataflow variables can be bound to only one value. A thread that shares a

variable with another thread does not have to worry that the other thread will change
the binding.

• So why not stick with this model?
– In many cases, we can stick with this model
– But not always. For example, two clients that communicate with one server cannot

be programmed in this model. Why not? Because there is an observable
nondeterminism.

• The concurrent declarative model is deterministic. If the program we write has
an observable nondeterminism, then we cannot use the model.

3

C. Varela; Adapted from S. Haridi and P. Van Roy 13

Programming with
concurrency and state

• Programming with concurrency and state is largely a
matter of reducing the number of interleavings, so that we
can reason about programs in a simpler way. There are
two basic approaches: message passing and atomic actions.

• Message passing with active objects: Programs consist of
threads that send asynchronous messages to each other.
Each thread only receives a message when it is ready,
which reduces the number of interleavings.

• Atomic actions on shared state: Programs consist of
passive objects that are called by threads. We build large
atomic actions (e.g., with locks, monitors, or transactions)
to reduce the number of interleavings.

C. Varela; Adapted from S. Haridi and P. Van Roy 14

When to use each approach

• Message passing: useful for multi-agent applications, i.e.,
programs that consist of autonomous entities (« agents »,
« actors » or « active objects ») that communicate with
each other.

• Atomic actions: useful for data-centered applications, i.e.,
programs that consist of a large repository of data
(« database » or « shared state ») that is accessed and
updated concurrently.

• Both approaches can be used together in the same
application, for different parts

C. Varela; Adapted from S. Haridi and P. Van Roy 15

Overview of
concurrent programming

• There are four basic approaches:
– Sequential programming (no concurrency)
– Declarative concurrency (streams in a functional language)
– Message passing with active objects (Erlang, SALSA)
– Atomic actions on shared state (Java)

• The atomic action approach is the most difficult, yet it is
the one you will probably be most exposed to!

• But, if you have the choice, which approach to use?
– Use the simplest approach that does the job: sequential if that is

ok, else declarative concurrency if there is no observable
nondeterminism, else message passing if you can get away with it.

C. Varela; Adapted from S. Haridi and P. Van Roy 16

Ports and cells

• We have seen cells, the basic unit of encapsulated state, as a primitive concept
underlying stateful and object-oriented programming. Cells are like variables
in imperative languages.

• Cells are the natural concept for programming with shared state
• There is another way to add state to a language, which we call a port. A port is

an asynchronous FIFO communications channel.
• Ports are a natural concept for programming with active objects
• Cells and ports are duals of each other

– Each can be implemented with the other, so they are equal in expressiveness
– Each is more natural in some circumstances
– They are equivalent because each allows many-to-one communication (cell shared

by threads, port shared by threads)

C. Varela; Adapted from S. Haridi and P. Van Roy 17

Ports
• A port is an ADT with two operations:

– {NewPort S P}: create a new port P with a new stream S. The
stream is a list with unbound tail, used to model the FIFO nature of
the communications channel.

– {Send P X}: send message X on port P. The message is appended
to the stream S and can be read by threads reading S.

• Example:
declare P S in

{NewPort S P}
{Browse S}
thread{Send P 1}end
thread{Send P 2}end

C. Varela; Adapted from S. Haridi and P. Van Roy 18

Building locks with cells
• The basic way to program with shared state is by using locks
• A lock is a region of the program that can only be occupied by one thread at a

time. If a second thread attempts to enter, it will suspend until the first thread
exits.

• More sophisticated versions of locks are monitors and transactions:
– Monitors: locks with a gating mechanism (e.g., wait/notify in Java) to control which

threads enter and exit and when. Monitors are the standard primitive for concurrent
programming in Java.

– Transactions: locks that have two exits, a normal and abnormal exit. Upon
abnormal exit (called « abort »), all operations performed in the lock are undone, as
if they were never done. Normal exit is called « commit » .

• Locks can be built with cells. The idea is simple: the cell contains a token. A
thread attempting to enter the lock takes the token. A thread that finds no
token will wait until the token is put back.

4

C. Varela; Adapted from S. Haridi and P. Van Roy 19

Building active objects with ports
• Here is a simple active object:

declare P in
local Xs in

{NewPort Xs P}
thread {ForAll Xs proc {$ X} {Browse X} end} end

end

{Send P foo(1)}
thread {Send P bar(2)} end

C. Varela; Adapted from S. Haridi and P. Van Roy 20

Defining ports with cells
• A port is an unbundled stateful ADT:

proc {NewPort S P}
C={NewCell S}

in
P={Wrap C}

end

proc {Send P X}
C={Unwrap P}
Old

in
{Exchange C X|Old Old}

end

Anyone can do a send because
anyone can do an exchange

C. Varela; Adapted from S. Haridi and P. Van Roy 21

Active objects with classes
• An active object’s behavior can be defined by a class
• The class is used to create a (passive) object, which is invoked by one thread that reads

from a port’s stream
• Anyone can send a message to the object asynchronously, and the object will execute

them one after the other, in sequential fashion:

declare ActObj in
local Obj Xs P in

Obj={New Class init}
{NewPort Xs P}
thread {ForAll Xs proc {$ M} {Obj M} end} end
proc {ActObj M} {Send P M} end

end
{ActObj msg(1)}

• Note that {Obj M} is synchronous and {ActObj M} is asynchronous!

C. Varela; Adapted from S. Haridi and P. Van Roy 22

Creating active objects
with NewActive

• We can create a function NewActive that behaves like New except that it
creates an active object:

fun {NewActive Class Init}
Obj Xs P

in
Obj={New Class Init}
{NewPort Xs P}
thread {ForAll Xs proc {$ M} {Obj M} end} end
proc {$ M} {Send P M} end

end

ActObj = {NewActive Class init}

C. Varela; Adapted from S. Haridi and P. Van Roy 23

Making active objects
synchronous

• We can make an active object synchronous by using a dataflow variable to
store a result, and waiting for the result before continuing

fun {NewSynchronousActive Class Init}
Obj Xs P

in
Obj={New Class Init}
{NewPort Xs P}
thread {ForAll Xs proc {$ msg(M X)} {Obj M} X=unit end} end
proc {$ M} X in {Send P msg(M X)} {Wait X} end

end

• This can be modified to handle when the active object raises an exception, to
pass the exception back to the caller

C. Varela; Adapted from S. Haridi and P. Van Roy 24

Playing catch

class Bounce
attr other count:0
meth init(Other)
 other:=Other
end
meth ball
 count:=@count+1
 {@other ball}
end
meth get(X)
 X=@count
end

end

declare B1 B2 in
B1={NewActive Bounce init(B2)}
B2={NewActive Bounce init(B1)}

% Get the ball bouncing
{B1 ball}

% Follow the bounces
{Browse {B1 get($)}}

B1 B2
ball

ball

5

C. Varela; Adapted from S. Haridi and P. Van Roy 25

An area server

class AreaServer

meth init skip end
meth square(X A)
 A=X*X
end
meth circle(R A)
 A=3.14*R*R
end

end

declare S in
S={NewActive AreaServer init}

% Query the server
declare A in
{S square(10 A)}
{Browse A}

declare A in
{S circle(20 A)}
{Browse A}

C. Varela; Adapted from S. Haridi and P. Van Roy 26

Event manager with active objects

• An event manager contains a set of event handlers
• Each handler is a triple Id#F#S where Id identifies it, F is the state update

function, and S is the state
• Reception of an event causes all triples to be replaced by Id#F#{F E S}

(transition from F to {F E S})
• The manager EM is an active object with four methods:

– {EM init} initializes the event manager
– {EM event(E)} posts event E at the manager
– {EM add(F S Id)} adds new handler with F, S, and returns Id
– {EM delete(Id S)} removed handler Id, returns state

• This example taken from real use in Erlang

C. Varela; Adapted from S. Haridi and P. Van Roy 27

Defining the event manager

• Mix of functional and object-oriented style

class EventManager
 attr handlers
 meth init handlers:=nil end
 meth event(E)
 handlers:=
 {Map @handlers fun {$ Id#F#S} Id#F#{F E S} end}
 end
 meth add(F S Id)
 Id={NewName}
 handlers:=Id#F#S|@handlers
 end
 meth delete(DId DS)
 handlers:={List.partition
 @handlers fun {$ Id#F#S} DId==Id end [_#_#DS]}
 end
end

State transition done using
functional programming

C. Varela; Adapted from S. Haridi and P. Van Roy 28

Using the event manager

• Simple memory-based handler keeps list of events

declare EM MemH Id in
EM={NewActive EventManager init}

MemH=fun {$ E Buf} E|Buf end
{EM add(MemH nil Id)}

{EM event(a1)}
{EM event(a2)}
...

• An event handler is purely functional, yet when put in the event manager, the
latter is a concurrent imperative program. This is an example of separation of
concerns by using multiple paradigms.

C. Varela; Adapted from S. Haridi and P. Van Roy 29

Exercises

60. Do Java and C++ provide linguistic abstractions for active
objects? If so, which? If not, how would you implement
this abstraction?

61. Exercise VRH 7.9.1 (pg 567)
62. *Exercise VRH 7.9.6(a) (pg 568)

