Concurrent Object-Oriented Programming

Java Concurrency (VRH 8.6)
Objects, Active Objects (VRH 7.2,7.8)

Carlos Varela
RPI

Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
ucL

October 30, 2006

C. Varela; Adapted from S. Haridi and P. Van Roy 1

Concurrent Programming in Java

« Java is multi-threaded.
« Two ways to create new threads:
— Extend java.lang.Thread
« Overwrite “run()” method.
— Implement Runnable interface
« Include a “run()” method in your class.
« Starting a thread
— new MyThread().start();
— new Thread(runnable).start();

C. Varela; Adapted from S. Haridi and P. Van Roy 2

The synchronized Statement

* To ensure only one thread can run a block of code, use
synchronized:

synchronized (object) {

// critical code here

+ Every object contains an internal lock for synchronization.

C. Varela; Adapted from S. Haridi and P. Van Roy 3

synchronized as a modifier

* You can also declare a method as synchronized:

synchronized int blah(String x) {
// blah blah blah
}

equivalent to:

int blah(String x) {
synchronized (this) {
// blah blah blah
}
}

C. Varela; Adapted from S. Haridi and P. Van Roy 4

Object-Oriented Programming in
Oz

The class Counter has the syntactic form

class Counter
attr val
meth display
{Browse @val}
end
meth inc(Value)
val := @val + Value

end
meth init(Value)
val := Value
end
end

C. Varela; Adapted from S. Haridi and P. Van Roy 5

Attributes of Classes

The class Counter has the syntactic form

class Counter

val is an attribute:
attr val

~——— amodifiable cell
that is accessed by the
atom val

end

C. Varela; Adapted from S. Haridi and P. Van Roy 6

Attributes of classes

The class Counter has the syntactic form

class Counter
attr val
meth display
{Browse @val} the attribute val

end ;
thy
meth inc(Value) is accessed by the

Attributes of classes

The class Counter has the syntactic form

class Counter

rator @val
val := @val + Value el e

end
meth init(Value)
val := Value
end
end

C. Varela; Adapted from S. Haridi and P. Van Roy

attr val
meth display

d{BFOWSG @val} the attribute val
en : :

. is assigned by the

meth inc(Value) o crat%r - Y

val := @val + Value P o
end asval = ...
meth init(Value)

val := Value
end

end
C. Varela; Adapted from S. Haridi and P. Van Roy 8

Methods of classes

The class Counter has the syntactic form

class Counter
attr val
meth display
{Browse @val}
end
meth inc(Value)
val := @val + Valu

end
meth init(Value)
val := Value
end
end

C. Varela; Adapted from S. Haridi and P. Van Roy

methods
are statements
method head is a

record (tuple) pattern

Concurrency and state
are tough when used together

Execution consists of multiple threads, all executing
independently and all using shared memory

Because of interleaving semantics, execution happens as if
there was one global order of operations

Assume two threads and each thread does k operations.
Then the total number of possible interleavings is 7 o
This is exponential in k. (k)
One can program by reasoning on all possible
interleavings, but this is extremely hard. What do we do?

C. Varela; Adapted from S. Haridi and P. Van Roy 10

Concurrent stateful model

|
|
| local (x) in(s,) end
I proo {G0) (y) - (5)} s1) end
| if {x) then (s,) else (s,) end
{000 -)
| case (x) of (pattern) then (s,) else (s,) end
| {NewName (x)}
| thread (s) end

{ByNeed (x) (y))

try (s,) catch (x) then (s,) end

raise (x) end

{NewCell {(x) {y)}

{Exchange (x) {y) (z) }

empty statement
variable-variable binding
variable-value binding
sequential composition
declaration
procedure creation
conditional
procedure application
pattern matching
name creation

thread creation

trigger creation
exception context
raise exception

cell creation

cell exchange

C. Varela; Adapted from S. Haridi and P. Van Roy 11

Why not use a simpler model?

The concurrent declarative model is much simpler

— Programs give the same results as if they were sequential, but they give the results

incrementally
Why is this model so easy?

— Because dataflow variables can be bound to only one value. A thread that shares a
variable with another thread does not have to worry that the other thread will change
the binding.

So why not stick with this model?

— In many cases, we can stick with this model

— But not always. For example, two clients that communicate with one server cannot
be programmed in this model. Why not? Because there is an observable
nondeterminism.

The concurrent declarative model is deterministic. If the program we write has
an observable nondeterminism, then we cannot use the model.

C. Varela; Adapted from S. Haridi and P. Van Roy 12

Programming with
concurrency and state

* Programming with concurrency and state is largely a
matter of reducing the number of interleavings, so that we
can reason about programs in a simpler way. There are
two basic approaches: message passing and atomic actions.

» Message passing with active objects: Programs consist of
threads that send asynchronous messages to each other.
Each thread only receives a message when it is ready,
which reduces the number of interleavings.

+ Atomic actions on shared state: Programs consist of
passive objects that are called by threads. We build large
atomic actions (e.g., with locks, monitors, or transactions)
to reduce the number of interleavings.

C. Varela; Adapted from S. Haridi and P. Van Roy 13

When to use each approach

Message passing: useful for multi-agent applications, i.e.,
programs that consist of autonomous entities (« agents »,
«actors » or « active objects ») that communicate with
each other.

Atomic actions: useful for data-centered applications, i.e.,
programs that consist of a large repository of data

(« database » or « shared state ») that is accessed and
updated concurrently.

Both approaches can be used together in the same
application, for different parts

C. Varela; Adapted from S. Haridi and P. Van Roy 14

Overview of
concurrent programming

» There are four basic approaches:

Sequential programming (no concurrency)
Declarative concurrency (streams in a functional language)

Mess:

> passing with active objects (Erlang, SALSA)

Atomic actions on shared state (Java)
+ The atomic action approach is the most difficult, yet it is
the one you will probably be most exposed to!
* But, if you have the choice, which approach to use?

— Use the simplest approach that does the job: sequential if that is
ok, else declarative concurrency if there is no observable
nondeterminism, else message passing if you can get away with it.

C. Varela; Adapted from S. Haridi and P. Van Roy 15

Ports and cells

We have seen cells, the basic unit of encapsulated state, as a primitive concept
underlying stateful and object-oriented programming. Cells are like variables
in imperative languages.
Cells are the natural concept for programming with shared state
There is another way to add state to a language, which we call a port. A port is
an asynchronous FIFO communications channel.
Ports are a natural concept for programming with active objects
Cells and ports are duals of each other

— Each can be implemented with the other, so they are equal in expressiveness

— Each is more natural in some circumstances

— They are equivalent because each allows many-to-one communication (cell shared

by threads, port shared by threads)

C. Varela; Adapted from S. Haridi and P. Van Roy 16

Ports

* A port is an ADT with two operations:

{NewPort S P}: create a new port P with a new stream S. The
stream is a list with unbound tail, used to model the FIFO nature of
the communications channel.
{Send P X} : send message X on port P. The message is appended
to the stream S and can be read by threads reading S.
+ Example:

declare P S in
{NewPort S P}
{Browse S}
thread{Send P 1}end

thread{Send P 2}end

C. Varela; Adapted from S. Haridi and P. Van Roy 17

Building locks with cells

The basic way to program with shared state is by using locks
A lock is a region of the program that can only be occupied by one thread at a
time. Ifa second thread attempts to enter, it will suspend until the first thread
exits.
More sophisticated versions of locks are monitors and transactions:
Monitors: locks with a gating mechanism (e.g., wait/notify in Java) to control which
threads enter and exit and when. Monitors are the standard primitive for concurrent
programming in Java.
T'ransactions: locks that have two exits, a normal and abnormal exit. Upon
abnormal exit (called « abort »), all operations performed in the lock are undone, as
if they were never done. Normal exit is called « commit » .
Locks can be built with cells. The idea is simple: the cell contains a token. A
thread attempting to enter the lock takes the token. A thread that finds no
token will wait until the token is put back.

C. Varela; Adapted from S. Haridi and P. Van Roy 18

Building active objects with ports

* Here is a simple active object:

declare P in
local Xs in

{NewPort Xs P}

thread {ForAll Xs proc {$ X} {Browse X} end} end
end

{Send P foo(1)}
thread {Send P bar(2)} end

C. Varela; Adapted from S. Haridi and P. Van Roy 19

Defining ports with cells

« Aport is an unbundled stateful ADT:

proc {NewPort S P}
C={NewCell S} Anyone can do a send because
in anyone can do an exchange

P={Wrap C}
end
proc {Send P X}
C={Unwrap P}
Old
in
{Exchange C X|OId Old}
end
C. Varela; Adapted from S. Haridi and P. Van Roy 20

Active objects with classes

* Anactive object’s behavior can be defined by a class

+ The class is used to create a (passive) object, which is invoked by one thread that reads
from a port’s stream

+ Anyone can send a message to the object asynchronously, and the object will execute
them one after the other, in sequential fashion:

declare ActObj in
local Obj Xs P in
Obj={New Class init}
{NewPort Xs P}
thread {ForAll Xs proc {$ M} {Obj M} end} end
proc {ActObj M} {Send P M} end
end
{ActObj msg(1)}

+ Note that {Obj M} is synchronous and {ActObj M} is asynchronous!

C. Varela; Adapted from S. Haridi and P. Van Roy 21

Creating active objects
with NewActive

We can create a function NewActive that behaves like New except that it
creates an active object:

fun {NewActive Class Init}
Obj Xs P

in
Obj={New Class Init}
{NewPort Xs P}
thread {ForAll Xs proc {$ M} {Obj M} end} end
proc {$ M} {Send P M} end

end

ActObj = {NewActive Class init}

C. Varela; Adapted from S. Haridi and P. Van Roy 22

Making active objects
synchronous

« We can make an active object synchronous by using a dataflow variable to
store a result, and waiting for the result before continuing

fun {NewSynchronousActive Class Init}
Obj Xs P

in
Obj={New Class Init}
{NewPort Xs P}
thread {ForAll Xs proc {$ msg(M X)} {Obj M} X-unit end} end
proc {8 M} X in {Send P msg(M X)} {Wait X} end

end

« This can be modified to handle when the active object raises an exception, to
pass the exception back to the caller

C. Varela; Adapted from S. Haridi and P. Van Roy 23

Playing catch

ball
class Bounce —
attr other count:0
meth init(Other) ball
other:=Other
end declare B1 B2 in
e it B1={NewActive Bounce init(B2)}
%’or{h;%‘l’l;‘" B2={NewActive Bounce init(B1)}
end
meth get(X) % Get the ball bouncing
X=@count {B1 ball}
end
end % Follow the bounces

{Browse {B1 get($)}}

C. Varela; Adapted from S. Haridi and P. Van Roy 24

An area server

class AreaServer declare Sin
meth init skip end S={NewActive AreaServer init}
meth square(X A)

A=X*X % Query the server
end declare Ain
meth circle(R A) {S square(10 A)}
A=3.14'R'R {Browse A}
end
end declare Ain
{S circle(20 A)}
{Browse A}
C. Varela; Adapted from S. Haridi and P. Van Roy 25

Event manager with active objects

An event manager contains a set of event handlers

Each handler is a triple T # = #5 where Id identifies it, F is the state update

function, and S is the state

Reception of an event causes all triples to be replaced by

(transition from F to {F E S})

The manager EM is an active object with four methods:
—~ {EM init} initializes the event manager

~ [EM event (E)] posts event E at the manager
) } adds new handler with F, S, and returns Id
— {(EM delete (Id S)} removed handler Id, returns state

- {EM add(F S Id

This example taken from real use in Erlang

C. Varela; Adapted from S. Haridi and P. Van Roy 26

Defining the event manager

« Mix of functional and object-oriented style

class EventManager
attr handlers
meth init handlers:=nil end
meth event(E)
handlers:= e - ~
{Map @handlers fun {$ Id#F#S} Id#F#{F E S} end}

State transition done using
functional programming

end
meth add(F S Id)
Id={NewName}
handlers:=Id#F#S | @handlers
end
meth delete(DId DS)
handlers:={List.partition
€handlers fun {$ Id#F#S} DId==Id end [_# #DS]}
end
end
C. Varela; Adapted from S. Haridi and P. Van Roy 27

Using the event manager

Simple memory-based handler keeps list of events

declare EM MemH Id in
EM={NewActive EventManager init}

MemH=fun {$ E Buf} E|Buf end
{EM add(MemH nil Id)}

{EM event(al)}
{EM event(a2)}

An event handler is purely functional, yet when put in the event manager, the

latter is a concurrent imperative program. This is an example of scparation of
concerns by using multiple paradigms.

C. Varela; Adapted from S. Haridi and P. Van Roy 28

Exercises

60. Do Java and C++ provide linguistic abstractions for active
objects? If so, which? If not, how would you implement
this abstraction?

61. Exercise VRH 7.9.1 (pg 567)
62. *Exercise VRH 7.9.6(a) (pg 568)

C. Varela; Adapted from S. Haridi and P. Van Roy 29

