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2.2 Order of Evaluation

There are different ways to evaluate lambda expressions. The first method is to always fully evaluate the
arguments of a function before evaluating the function itself. This order is called applicative order. In the
expression

(λx.x2 (λx.x + 1 2)),

the argument (λx.x + 1 2) should be simplified first. The result is

⇒ (λx.x2 2 + 1)⇒ (λx.x2 3)⇒ 32 ⇒ 9.

Another method is to evaluate the left-most redex first. A redex is an expression of the form (λx.E M),
on which β -reduction can be performed. This order is called normal order. The same expression would
be reduced from the outside in, with E = x2 and M = (λx.x + 1 2). In this case the result is

⇒ (λx.x + 1 2)2 ⇒ (2 + 1)2 ⇒ 9.

As you can see, both orders produced the same result. But is this always the case? It turns out that
the answer is “no” for certain expressions whose simplification does not terminate. Consider the expression

(λx.(x x) λx.(x x)).

It is easy to see that reducing this expression gives the same expression back, creating an infinite loop. If
we consider the expanded expression

(λx.y (λx.(x x) λx.(x x))),

we find that the two evaluation orders are not equivalent. Using applicative order, the (λx.(x x) λx.(x x))
expression must be evaluated first, but this never terminates. If we use normal order, however, we evaluate
the entire expression first, with E = y and M = (λx.(x x) λx.(x x)). Since there are no x’s in E to
replace, the result is simply y. It turns out that it is only in these particular non-terminating cases that
the two orders may give different results. The Church-Rosser theorem (also called the confluence property
or the diamond property) states that if a lambda calculus expression can be evaluated in two different ways
and both ways terminate, both ways will yield the same result.

Also, if there is a way for an expression to terminate, using normal order will cause the termination.
In other words, normal order is the best if you want to avoid infinite loops. Take as another example the
C program

int loop() {
return loop();

}
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int f(int x, int y) {
return x;

}

int main() {
return f(3, loop());

}

In this case, using applicative order will cause the program to hang, because the second argument loop()
will be evaluated. Using normal order will terminate because the unneeded y variable will never be
evaluated.

Though normal order is better in this respect, applicative order is the one used by most programming
languages. Why? Consider the function f(x) = x + x. To find f(4/2) using normal order, we hold off on
evaluating the argument until after placing the argument in the function, so it yields

f(4/2) = 4/2 + 4/2 = 2 + 2 = 4,

and the division needs to be done twice. If we use applicative order, we get

f(4/2) = f(2) = 2 + 2 = 4,

which only requires one division. Since applicative order avoids repetitive computations, it is the preferred
method of evaluation in most programming languages, where short execution time is critical.

2.3 Combinators

Any lambda calculus expression with no free variables is called a combinator. Because the meaning of a
lambda expression is dependent only on the bindings of its free variables, combinators always have the
same meaning independently of the context in which they are used.

There are certain combinators that are very useful in lambda calculus:
The identity combinator is defined as

I = λx.x.

It simply returns whatever is given to it. For example

(I 5)⇒ (λx.x 5)⇒ 5.

The identity combinator in Oz can be written:

declare I = fun {$ X} X end

Contrast it to, for example, a Circumference function:

declare Circumference = fun {$ Radius} 2*PI*Radius end

The semantics of the Circumference function depends on the definitions of PI and *. It is, therefore,
not a combinator.

The application combinator is
App = λf.λx.(f x),

and allows you to evaluate a function with an argument. For example

((App λx.x2) 3)
⇒ ((λf.λx.(f x) λx.x2) 3)
⇒ (λx.(λx.x2 x) 3)
⇒ (λx.x2 3)
⇒ 9.
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The sequencing combinator is
Seq = λx.λy.(λz.y x)

where z is chosen so that it does not appear free in y.
This combinator guarantees that x is evaluated before y, which is important in programs with side-

effects. Assuming we had a “display” function sending output to the console, an example is

((Seq (display “hello”)) (display “world”))

2.4 Currying

The currying higher-order function takes a function and returns a curried version of the function. For
example, it would take as input the Plus function, which has the type

Plus : (Z× Z)→ Z.

The type of a function defines what kinds of things the function can receive and what kinds of things it
produces as output. In this case Plus takes two integers (Z× Z), and returns an integer.

The definition of Plus in Oz is

declare Plus =
fun {$ X Y}

X+Y
end

The currying combinator would then return the curried version of Plus, called PlusC, which has the
type

PlusC : Z→ (Z→ Z).

Here, PlusC takes one integer as input and returns a function from the integers to the integers (Z → Z).
The definition of PlusC in Oz is

declare PlusC =
fun {$ X}

fun {$ Y}
X+Y

end
end

The Oz version of the currying combinator, which we will call Curry, would work as follows:

{Curry Plus} ⇒ PlusC.

Using the input and output types above, the type of the Curry function is

Curry : (Z× Z→ Z)→ (Z→ (Z→ Z)).

So the Curry function should take as input an uncurried function and return a curried function. In Oz, we
can write Curry as follows:

declare Curry =
fun {$ F}

fun {$ X}
fun {$ Y}

{F X Y}
end

end
end
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Exercises

3. Write a function composition combinator in the λ-calculus.

4. Define a curried version of Compose in Oz, ComposeC, without using the Curry combinator. (Hint: It
should look very similar to the λ-calculus expression from the previous exercise.)

5. † Install Mozart/Oz in your computer.

6. † Define functions Plus, PlusC (its curried version), and test them.
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