Declarative Programming Techniques

Accumulators, Difference Lists (VRH 3.4.3-3.4.4)

Carlos Varela
RPI
Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL
September 13, 2007

Accumulators

- Accumulator programming is a way to handle state in declarative programs. It is a programming technique that uses arguments to carry state, transform the state, and pass it to the next procedure.
- Assume that the state \(S \) consists of a number of components to be transformed individually:
 \[S = (X,Y,Z,...) \]
- For each predicate \(P \), each state component is made into a pair, the first component is the input state and the second component is the output state after \(P \) has terminated
- \(S \) is represented as
 \[(X_{int},X_{out}), (Y_{int},Y_{out}), (Z_{int},Z_{out}),... \]

A Trivial Example in Prolog

- \(\text{increment}(N_0,N) \):
 - \(N \) is the input and produces \(N \) as the output by adding 1 to \(N \).
- \(\text{square}(N_0,N) \):
 - \(N \) is the input and produces \(N \) as the output by multiplying \(N_0 \) by itself.
- \(\text{inc_square}(N_0,N1,N) \):
 - \(N \) is the input and produces \(N \) as the output by using an intermediate variable \(N1 \) to carry \(N_0+1 \) (the output of \(\text{increment} \)) and passing it as input to \(\text{square} \). The pairs \(N0-N1 \) and \(N-N \) are called accumulators.

A Trivial Example in Oz

- \(\text{increment}(N_0,N) \):
 - \(N \) is the input and produces \(N \) as the output by adding 1 to \(N \).
- \(\text{square}(N_0,N) \):
 - \(N \) is the input and produces \(N \) as the output by multiplying \(N_0 \) by itself.
- \(\text{inc_square}(N_0,N1,N) \):
 - \(N \) is the input and produces \(N \) as the output by using an intermediate variable \(N1 \) to carry \(N_0+1 \) (the output of \(\text{increment} \)) and passing it as input to \(\text{square} \). The pairs \(N0-N1 \) and \(N-N \) are called accumulators.

Accumulators

- Assume that the state \(S \) consists of a number of components to be transformed individually:
 \[S = (X,Y,Z) \]
- Assume \(P_1 \) to \(P_n \) are procedures in Oz
- The same concept applies to predicates in Prolog

MergeSort Example

- Consider a variant of MergeSort with accumulator
 - \(\text{proc} \{ \text{MergeSort1} \ N \ S0 \ S \ Xs \} \)
 - \(N \) is an integer,
 - \(S0 \) is an input list to be sorted
 - \(S \) is the remainder of \(S0 \) after the first \(N \) elements are sorted
 - \(Xs \) is the sorted first \(N \) elements of \(S0 \)
- The pair \((S0, S) \) is an accumulator
- The definition is in a procedural syntax in Oz because it has two outputs \(S \) and \(Xs \)
Example (2)

```
fun (MergeSort Xs)
  (MergeSort (Length Xs) Xs _ Ys)
end
```

```
proc (MergeSort N S0 S Xs)
  if N==0 then S = S0 Xs = nil
  elseif N ==1 then
    X in X|S = S0 Xs=[X]
  else
    local S1 Xs1 Xs2 NL NR
    in
      NL = N div 2
      NR = N - NL
      (MergeSort1 NL S0 S1 Xs1)
      (MergeSort1 NR S1 S Xs2)
      Xs = {Merge Xs1 Xs2}
    end
  end
end
```

MergeSort Example in Prolog

```
mergeSort(Xs,Ys) :-
  length(Xs,N),
  mergeSort1(N,Xs,_,
    Ys).
```

```
mergeSort1(0,S,S,
    [] ) :- !.
mergeSort1(1,[X|S],
    S,
    [X] ) :- !.
mergeSort1(N,S0,
    S,
    Xs)
  :-
    NL is N // 2,
    NR is N - NL,
    mergeSort1(NL,S0,S1,Xs1),
    mergeSort1(NR,S1,S,Xs2),
    merge(Xs1,Xs2,Xs).
```

Multiple accumulators

- Consider a stack machine for evaluating arithmetic expressions
- Example: (1+4)-3
- The machine executes the following instructions

 push(1)
push(4)plus
minus

```
4 5 3 2
1
```

Multiple accumulators (2)

- Example: (1+4)-3
- The arithmetic expressions are represented as trees:

 `minus(plus(1 4) 3)`

- Write a procedure that takes arithmetic expressions represented as trees and outputs a list of stack machine instructions and counts the number of instructions:

```
proc {ExprCode Expr Cin Cout Nin Nout}
  case Expr of
    plus(Expr1 Expr2) then
      C1 N1 in
      C1 = plus|C0
      N1 = N0 + 1
      {SeqCode [Expr2 Expr1] C1 C N1 N}
    minus(Expr2 Expr1) then
      C1 N1 in
      C1 = minus|C0
      N1 = N0 + 1
      {SeqCode [Expr2 Expr1] C1 C N1 N}
    I andthen {IsInt I} then
      C = push(I)|C0
      N = N0 + 1
    end
  end
end
```

Multiple accumulators (3)

```
proc {ExprCode Expr C0 C N0 N}
  case Expr of
    plus(Expr1 Expr2) then
      C1 N1 in
      C1 = plus|C0
      N1 = N0 + 1
      {SeqCode [Expr2 Expr1] C1 C N1 N}
    minus(Expr2 Expr1) then
      C1 N1 in
      C1 = minus|C0
      N1 = N0 + 1
      {SeqCode [Expr2 Expr1] C1 C N1 N}
    I andthen {IsInt I} then
      C = push(I)|C0
      N = N0 + 1
    end
  end
end
```

Multiple accumulators (4)

```
proc {SeqCode Es C0 C N0 N}
  case Es of
    nil then
      C = C0 N = N0
    Es|Er
      N1 C1 in
      {SeqCode [Es] C0 C1 N1 N}
      {SeqCode Er C1 C N1 N}
      end
  end
end
```
Shorter version (4)

```plaintext
proc {ExprCode Expr C0 C N0 N}
  case Expr of
    plus(Expr1 Expr2) then
        {SeqCode [Expr2 Expr1] plus|C0 C N0 + 1 N}
    minus(Expr1 Expr2) then
        {SeqCode [Expr2 Expr1] minus|C0 C N0 + 1 N}
    I then
        I = push(I)|C0 C N0 + 1 N
  end
end
```

Functional style (4)

```plaintext
fun {ExprCode Expr C0 N0}
  case Expr of
    plus(Expr1 Expr2) then
        {SeqCode [Expr2 Expr1] plus|C0 N0 + 1 N}
    minus(Expr1 Expr2) then
        {SeqCode [Expr2 Expr1] minus|C0 N0 + 1 N}
    I then
        C = push(I)|C0 C N0 + 1 N
  end
end
```

Difference lists in Oz

- A difference list is a pair of lists, each might have an unbound tail, with the invariant that one can get the second list by removing zero or more elements from the first list
 - X ≠ X % Represent the empty list
 - nil ≠ nil % idem
 - [a] ≠ [a] % idem
 - (a,b,c|X) ≠ X % Represents [a,b,c]
 - [a,b,c,d] ≠ [d] % idem

Difference lists in Prolog

- A difference list is a pair of lists, each might have an unbound tail, with the invariant that one can get the second list by removing zero or more elements from the first list
 - X = X % Represent the empty list
 - [] = [] % idem
 - [a] = [a] % idem
 - [a,b,c|X] = X % Represents [a,b,c]
 - [a,b,c,d] = [d] % idem

Difference lists in Oz (2)

- When the second list is unbound, an append operation with another difference list takes constant time
 - fun {AppendD D1 D2}
 S1 # E1 = D1
 S2 # E2 = D2
 in
 E1 = S2
 S1 # E2
 end
 - local X Y in {Browse {AppendD (1|2|3|X)#X (4|5|Y)#Y}} end
 - Displays (1|2|3|4|5|Y)#Y

Difference lists in Prolog (2)

- When the second list is unbound, an append operation with another difference list takes constant time
 - `append_Dl(S1,E1, S2,E2, S1,E2)` → E1 = S2.
 - `?- append_dll([1,2,3|X], [4,5|Y], [X, Y, S,E]).`
 - Displays
 X = [4, 5|X], Y = [4,5|Y], S = [1,2,3,4,5|S], E = [S,G193].
A FIFO queue with difference lists (1)

- A FIFO queue is a sequence of elements with an insert and a delete operation.
- Insert adds an element to one end and delete removes it from the other end.
- Queues can be implemented with lists. If L represents the queue content, then
 inserting X gives X|L and deleting X gives \{ButLast L X\} (all elements but
 the last).
- Delete is inefficient: it takes time proportional to the number of queue elements.
- With difference lists we can implement a queue with constant-time insert and
 delete operations.
- The queue content is represented as q(N S E), where N is the number of elements
 and S#E is a difference list representing the elements.

fun {NewQueue} X in q(0 X X)
end

fun {Insert Q X} case Q of q(N S E) then
 E1 in
 E=X|E1 q(N+1 S E1)
end

fun {Delete Q X} case Q of q(N S E) then
 S1 in
 X | S
 S1=S q(N-1 S1 E)
end

fun {EmptyQueue} case Q of q(N S E) then
 N==0
end
end

Flatten (revisited)

fun {Flatten Xs} case Xs of nil then nil
 []X|Xr andthen {IsLeaf X} then X|{Flatten Xr}
 []X|Xr andthen {Not {IsLeaf X}} then
 {Append {Flatten X} {Flatten Xr}}
end
end

Flatten with difference lists (1)

- Flatten nil is X|X
- Flatten X|Xr is Y1#Y where
 - flatten of Xs is Y1#Y2
 - flatten of Xr is Y3#Y
 - equate Y2 and Y3
- Flatten of a leaf X is (X|Y)#Y

fun (FlattenD Xs Ds) case Xs of
 nil then Y in Ds = Y#Y
 []X|Xr then Y0 Y1 Y2 in
 Ds = Y0#Y2
 (FlattenD X Y0#Y1)
 (FlattenD Xr Y1#Y2)
 []X|Xr andthen {IsLeaf X} then Y in (X|Y)#Y
end

Flatten with difference lists (2)

Here is what it looks like as text:

\[
\text{Let us replace lists by difference lists and see what happens.}
\]

\[
\text{(Flatten [1 2 3]) = [1 2 3]}
\]

Reverse (revisited)

Here is our recursive reverse:

fun {Reverse Xs} case Xs of
 nil then nil
 []X|Xr then (Append {Reverse Xr} [X])
end

Here is the new program. It is much more efficient than the first version.

fun (ReverseD Xs Ds) case Xs of
 nil then Y in Ds = Y
 []X|Xr then Y0 Y1 Y2 in
 Ds = Y0#Y2
 (FlattenD X Y0#Y1)
 (FlattenD Xr Y1#Y2)
 []X|Xr andthen {IsLeaf X} then Y in (X|Y)¥
end

fun (Append X Y) in X|Y
end

Here are with difference lists:

- Reverse of nil is X|Y
- Reverse of X|Xs is Y1#Y, where
 - reverse of Xs is Y1#Y2, and
 - equate Y2 and XY
Reverse with difference lists (1)

- The naive version takes time proportional to the square of the input length.
- Using difference lists in the naive version makes it linear time.
- We use two arguments Y1 and Y instead of Y1#Y.
- With a minor change we can make it iterative as well.

fun (ReverseD Xs)
proc (ReverseD Xs Y1 Y1)
case Xs
 of nil then Y1=Y
 | X|Xr then Y2 in {ReverseD Xr Y1 Y2}
 Y2 = X|Y
end
end
R in {ReverseD Xs R nil}
R end

Reverse with difference lists (2)

fun (ReverseD Xs)
proc (ReverseD Xs Y1 Y)
case Xs
 of nil then Y1=Y
 | X|Xr then {ReverseD Xr Y1 X|Y}
end
end
R in {ReverseD Xs R nil}
R end

Difference lists: Summary

- Difference lists are a way to represent lists in the declarative model such that one append operation can be done in constant time.
 - A function that builds a big list by concatenating together lots of little lists can usually be written efficiently with difference lists.
 - The function can be written naively, using difference lists and append, and will be efficient when the append is expanded out.
- Difference lists are declarative, yet have some of the power of destructive assignment.
 - Because of the single-assignment property of dataflow variables.
- Difference lists originated from Prolog and are used to implement, e.g., definite clause grammar rules for natural language parsing.

Exercises

15. Rewrite the multiple accumulators example in Prolog.
16. VRH Exercise 3.10.11 (page 232)
17. VRH Exercise 3.10.14 (page 232)
18. *VRH Exercise 3.10.15 (page 232)
19. *Modify the PLP11.3 “tic-tac-toe” example so that the computer strategy does not lose. Recall that the PLP code attempts to block a potential split from the opponent, but if there are two potential splits, it should instead try to win using a line that will not cause the opponent to create a double split.