Declarative Computation Model
Kernel language semantics
Basic concepts, the abstract machine (VRH 2.4.1-2.4.2)

Carlos Varela
RPI
October 9, 2007

Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL

Sequential declarative computation model

- The single assignment store
 - declarative (dataflow) variables
 - partial values (variables and values are also called entities)
- The kernel language syntax
- The kernel language semantics
 - The environment: maps textual variable names (variable identifiers) into entities in the store
 - Interpretation (execution) of the kernel language elements (statements) by the use of an abstract machine
 - Abstract machine consists of an execution stack of statements transforming the store

Kernel language syntax

The following defines the syntax of a statement, \(\langle s \rangle \) denotes a statement

\[
\langle s \rangle ::= \text{skip} \quad \text{empty statement}
\]

\[
\langle x \rangle = \langle y \rangle \quad \text{variable-variable binding}
\]

\[
\langle x \rangle = \langle v \rangle \quad \text{variable-value binding}
\]

\[
\langle s \rangle_1 \langle s \rangle_2 \quad \text{sequential composition}
\]

\[
\text{local} \langle x \rangle \text{in} \langle s \rangle \text{end} \quad \text{declaration}
\]

\[
\text{if} \langle x \rangle \text{then} \langle s \rangle_1 \text{else} \langle s \rangle_2 \text{end} \quad \text{conditional}
\]

\[
\{ \langle x \rangle \langle y \rangle_1 \ldots \langle y \rangle_n \} \quad \text{procedural application}
\]

\[
\text{case} \langle x \rangle \text{of} \langle \text{pattern} \rangle \text{then} \langle s \rangle_1 \text{else} \langle s \rangle_2 \text{end} \quad \text{pattern matching}
\]

\[
\langle v \rangle ::= \text{proc} \{ \langle y \rangle_1 \ldots \langle y \rangle_n \} \langle s \rangle \text{end} \quad \text{value expression}
\]

Examples

- \text{local} X \text{in} X = 1 \text{end}
- \text{local} X Y T Z \text{in}
 \begin{align*}
 X &= 5 \\
 Y &= 10 \\
 T &= (X >= Y) \\
 \text{if} & T \text{then} Z = X \text{else} Z = Y \text{end}
 \end{align*}

- \text{local} S T \text{in}
 \begin{align*}
 S &= \text{proc} \{ X Y \} Y = X*X \text{end} \\
 T &= \text{Browse} Z \text{end}
 \end{align*}

Procedure abstraction

- Any statement can be abstracted to a procedure by selecting a number of the ‘free’ variable identifiers and enclosing the statement into a procedure with the identifiers as parameters
- If \(X \Rightarrow Y \) then \(Z = X \) else \(Z = Y \) end
- Abstracting over all variables
 \[
 \text{proc} \{ \text{Max} X Y \}
 \begin{align*}
 &\text{if} X \Rightarrow Y \text{then} Z = X \text{else} Z = Y \text{end} \\
 \end{align*}
 \]
- Abstracting over \(X \) and \(Z \)
 \[
 \text{proc} \{ \text{LowerBound} X \}
 \begin{align*}
 &\text{if} X \Rightarrow Y \text{then} Z = X \text{else} Z = Y \text{end} \\
 \end{align*}
 \]

Computation defines (abstract machine)

- A computation defines how the execution state is transformed step by step from the initial state to the final state
- A single assignment store \(\sigma \) is a set of store variables, a variable may be unbound, bound to a partial value, or bound to a group of other variables
- An environment \(E \) is mapping from variable identifiers to variables or values in \(\sigma \), e.g. \(\{ X \rightarrow x_1, Y \rightarrow x_2 \} \)
- A semantic statement is a pair \((\langle s \rangle, E) \) where \(\langle s \rangle \) is a statement
- \(ST \) is a stack of semantic statements

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy
Computations (abstract machine)

- A computation defines how the execution state is transformed step by step from the initial state to the final state.
- The execution state is a pair \((ST, \sigma)\).
- ST is a stack of semantic statements.
- A computation is a sequence of execution states \((ST_0, \sigma_0) \rightarrow (ST_1, \sigma_1) \rightarrow (ST_2, \sigma_2) \rightarrow \ldots\).

Semantics

- To execute a program (i.e., a statement) \(\langle s \rangle\) the initial execution state is \((\langle s \rangle, \sigma)\).
- ST has a single semantic statement \((\langle s \rangle, \sigma)\).
- The environment \(E\) is empty, and the store \(\sigma\) is empty.
- \([\ldots]\) denotes the stack.
- At each step the first element of \(ST\) is popped and execution proceeds according to the form of the element.
- The final execution state (if any) is a state in which \(ST\) is empty.

skip

- The semantic statement is \((\text{skip}, E)\).
- Continue to next execution step.

Sequential composition

- The semantic statement is \(\langle (s_1 \langle s_2 \rangle \rangle), E\rangle\).
- Push \((\langle s_1 \rangle, E)\) and then push \((\langle s_2 \rangle, E)\) on \(ST\).
- Continue to next execution step.

Calculating with environments

- \(E\) is mapping from identifiers to entities (both store variables and values) in the store.
- The notation \(E(\langle y \rangle)\) retrieves the entity \(x\) associated with the identifier \(\langle y \rangle\) from the store.
- The notation \(E + \{\langle y_1 \rangle \rightarrow x_1, \langle y_2 \rangle \rightarrow x_2, \ldots, \langle y_n \rangle \rightarrow x_n\}\) denotes a new environment \(E'\) constructed from \(E\) by adding the mappings \(\{\langle y_1 \rangle \rightarrow x_1, \langle y_2 \rangle \rightarrow x_2, \ldots, \langle y_n \rangle \rightarrow x_n\}\).
- \(E'(\langle z \rangle)\) is \(x_i\) if \(\langle z \rangle\) is equal to \(\langle y_i \rangle\), otherwise \(E'(\langle z \rangle)\) is equal to \(E(\langle z \rangle)\).
- The notation \(E|_{\{\langle y_1 \rangle, \langle y_2 \rangle, \ldots, \langle y_n \rangle\}}\) denotes the projection of \(E\) onto the set \(\{\langle y_1 \rangle, \langle y_2 \rangle, \ldots, \langle y_n \rangle\}\), i.e., \(E\) restricted to the members of the set.
Calculating with environments (2)

- $E = \{X \mapsto 1, Y \mapsto [2 3], Z \mapsto x_i\}$
- $E' = E + \{X \mapsto 2\}$
- $E'(X) = 2$, $E(X) = 1$
- $E|_{\{X,Y\}}$ restricts E to the 'domain' $\{X,Y\}$, i.e., it is equal to $\{X \mapsto 1, Y \mapsto [2 3]\}$

Calculating with environments (3)

- local X in $X = 1$ (E)
 - local X in $X = 2$ (E')
 - $\{Browse\}$
- $\{Browse\}$

Lexical scoping

- Free and bound identifier occurrences
- An identifier occurrence is bound with respect to a statement $\langle s \rangle$ if it is in the scope of a declaration inside $\langle s \rangle$
- A variable identifier is declared either by a 'local' statement, as a parameter of a procedure, or implicitly declared by a case statement
- An identifier occurrence is free otherwise
- In a running program every identifier is bound (i.e., declared)

Lexical scoping (2)

- proc $\{P\}$
 - local Y in $Y = 1$ $\{Browse\}$ end
- Free Occurrences
- Bound Occurrences

Lexical scoping (3)

- local Arg1 Arg2 in
 - Arg1 = 111*111
 - Arg2 = 999*999
 - Res = Arg1*Arg2
- end

Lexical scoping (4)

- local Res in
 - local Arg1 Arg2 in
 - Arg1 = 111*111
 - Arg2 = 999*999
 - Res = Arg1*Arg2
- end
 - $\{Browse\}$
- end

This is not a runnable program!
Lexical scoping (5)

local P Q in
proc {P} {Q} end
proc {Q} {Browse hello} end
local Q in
proc {Q} {Browse hi} end
{P}
end
end

Exercises

46. Translate the following function to the kernel language:

fun {AddList L1 L2}
case L1 of H1|T1 then
 case L2 of H2|T2 then
 H1+H2|{AddList T1 T2}
 end
else nil end
end

47. Translate the following function call to the kernel language:

{Browse {Max 5 7}}

Exercises

48. Explain the difference between static scoping and dynamic scoping. Give an example program that produces different results with static and dynamic scoping.

49. *Think of a reason why static scoping may be preferable to dynamic scoping. Think of a reason why dynamic scoping may be preferable to static scoping.