Declarative Computation Model

Kernel language semantics revisited (VRH 2.4.5)
From kernel to practical language (VRH 2.6)
Exceptions (VRH 2.7)

Carlos Varela
RPI
October 15, 2007

Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
ucL

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 1

Sequential declarative computation
model

* The kernel language semantics revisited.
— Suspendable statements:
. if,
* case,
« procedure application.
— Procedure values
— Procedure introduction
— Procedure application.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Conditional

» The semantic statement is
(if (x) then (s,) else (s,) end , E)
+ If the activation condition (E({x)) is determined) is true:
— If E({x)) is not Boolean (true, false), raise an error
— E((x)) is true, push ({(s;) , E) on the stack
— E({x)) is false, push ({(s,) , £) on the stack
+ If the activation condition (E({x)) is determined) is false:
— Suspend

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 3

Case statement

+ The semantic statement is
(case (x) of () ({f1) + (k) -) + (o)
then (s;)
else (s,)end, E)
+ If the activation condition (E({x)) is determined) is true:
— If E({x)) is a record, the label of E((x)) is (/) and
its arity is [{f;) ... (/)]
push (local (x;) = (x). {(f}) ... {x,) = {x). {f,) in (sy) end, E)

on the stack
— Otherwise, push ((s,), E) on the stack
+ If the activation condition (E({X)) is determined) is false:
— Suspend

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 4

Procedure values

+ Constructing a procedure value in the store is not simple
because a procedure may have external references

local P Q in
Q =proc {$} {Browse hello} end
P =proc {$} {Q} end
local Q in
Q =proc {$} {Browse hi} end
{P}
end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 5

Procedure values (2)

TN

local P Qin proc {$} {Q} end Q—x,
Q =proc {$} {Browse hello} end
P=proc {$} {Q} end

local Q in ¥ (
Q = proc {$} {Browse hi} end 2 ’
P}
end
end proc {$} {Browse hello} end Browse — x,
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 6

Procedure values (3)

The semantic statement is
(@) =100 5.0,) G} 9) . E) (proc5n) - 0}
(1) ... (v,,) are the (formal) parameters of the <Y>
procedure end
Other free identifiers in (s} are called external
references (z,) ... (z) CE)

These are defined by the environment £ where the
procedure is declared (lexical scoping)

The contextual environment of the procedure CE is
Eliey e

When the procedure is called CE is used to construct
the environment for execution of (s)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 7

Procedure introduction

» The semantic statement is
() =proc {8 (y,) ... (va)} (s) end, E)
» Create a contextual environment:
CE=E |{(::) ¢y Where (z)) ... (z,) are external references in (s).

+ Create a new procedure value of the form:
(proc {$ (y) ... (v} {s) end, CE) , refer to it by the variable x,

* Bind the store variable E({x)) to x,
+ Continue to next execution step

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 8

Procedure application

* The semantic statement is

@) G}, B

+ If the activation condition (E({x)) is determined) is true:

— If E({x)) is not a procedure value, or it is a procedure
with arity that is not equal to », raise an error

IfE((x)) is (proc {$ (z,) ... (z,)} {s) end, CE),
(<Y> CE+ {(z)) = E(() - zo) = E(D})

on the stack
+ If the activation condition (E({X)) is determined) is false:
— Suspend

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 9

Execution examples

local Max C in
proc {Max XY Z}
s (s); if X >=Y then Z=X else Z=Y end
(s) 4 (8 end

{Max 3 5C}
end
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 10

Execution examples (2)

local Max C in

end
(s); {Max35C}
end

Initial state ([({s);, D)], D)
+ After local Max Cin ...
([(s)y {Max—m,C —c})], {m, c})
+ After Max binding
([(s)y {Max—m, C —c})],
{m = (proc{$ XYZ} (s)zend, D), c})

proc {Max XY Z}
(), <0s) { (s); ifX>=Y then Z=X else Z=Y end
1 2

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 11

Execution examples (3)

local Max C in

end
(s); {Max35C}
end

proc {Max XY Z}
(), <0s) { (s); ifX>=Y then Z=X else Z=Y end
1 2

+ After Max binding
([(s)y {Max—m, C —c})],
{m = (proc{$ X Y Z} (s),end, &), c})
* After procedure call
([(s)y X—=1,Y=>1,Z—c})],
{m = (proc{$ X Y Z} (s);end, D) , 1,=3, ,=5, ¢})

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 12

Execution examples (4)

local Max C in

end
(s), {Max 35C}
end

proc {Max XY Z}
(), <0s) { (s); if X>=Y then Z=X else Z=Y end
1 2

« After procedure call
([(€s)y, (X1, Y =1y, Z—>c})],
{m=(proc{S X Y Z} (s)send , @) , ,=3, 1,=5, ¢})
« After T=(X>=Y)
([(€s)y, X1, Y > 1), Z—>c, T—>1})],
{m=(proc{S X Y Z} (s)send , @), 1,=3, 1,=5, ¢, t=false})
(MZ=Y, X=14,Y =1, Z—>¢, T=>1})],
{m=(proc{S X Y Z} (s),end , @) , 1,=3, 1,=5, ¢, t=false})

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 13

Execution examples (5)

local Max C in

end
(s), {Max 35 C}
end

proc {Max XY Z}
(), <0s) { (s); if X>=Y then Z=X else Z=Y end
1 2

c ([Z=Y, X=t,Y=1,,Z=>c, T—>1})],
{m = (proc{$ X Y Z} (s);end , @) , t,=3, 1,=5, c, t=false})

* ([
{m = (proc{$ X Y Z} (s)send, @) , 1,=3, ,=5, ¢=5, t=false})

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 14

Procedures with external references

local LBY Cin
Y=5
(s)y proc {LB X Z}
(s), (s); if X >=Y then Z=X else Z=Y end
end
{LB3C}
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 15

Procedures with external references

local LBY Cin
Y=5

proc {LBXZ
(s)y (s) (s); ifX>=Y then Z=X else Z=Y end
end

{LB3 C}
end

* The procedure value of LB is
« (proc{$ X Z} (s)yend , {Y = })
* Thestoreis {y =5, ...}

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 16

Procedures with external references

local LBY Cin
Y=5

proc {LBXZ
(s)y (s) (s); ifX>=Y then Z=X else Z=Y end
end

{LB3C}
end

The procedure value of LB is

(proc{$ X Z} (s)send , {Y = y})

The store is {y =5, ...}

STACK: [({LBTC},{Y—=y,LB—=1,C—c, T—1})]
STORE: {y =5, Ib = (proc{$ X Z} (s)send, {Y = y}),t=3,¢c}

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 17

Procedures with external references

local LBY Cin
Y=5

proc {LBXZ
(s)y (s) (s); ifX>=Y then Z=X else Z=Y end
end

{LB3C}
end

STACK: [({LBTC} ,{Y—=y,LB—1b,C—>c,T—1})]
STORE: {y =5, Ib = (proc{$ X Z} (s)send, {Y = y}),t=3,¢c}
STACK: [({8);, {Y =y, X—=1,Z—c})]

STORE: {y =5, Ib = (proc{$ X Z} (s)send, {Y = y}),t=3,¢c}

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 18

Procedures with external references

local LBY Cin
Y=5
proc {LBXZ
(s)y (s) <s>3 if X>=Y then Z=X else Z=Y end
end
{LB3C}
end

STACK: [({8);, {Y =y, X—=1,Z—c})]

STORE: {y =5, Ib = (proc{$ X Z} (s)send, {Y = y}),1=3,¢c}
STACK: [(Z=Y , {Y =y, X —=1,Z—c})]

STORE: {y =5, Ib = (proc{$ X Z} (s)send, {Y = y}),t=3,¢c}
STACK: []

STORE: {y =5, Ib = (proc{$ X Z} (s)send, {Y = y}),t=3,c =5}

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 19

From the kernel language
to a practical language

* Interactive interface
— the declare statement and the global environment
+ Extend kernel syntax to give a full, practical syntax
— nesting of partial values
— implicit variable initialization
— expressions
nesting the if and case statements
— andthen and orelse operations
» Linguistic abstraction
— Functions

» Exceptions

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 20

The interactive interface (declare)

+ The interactive interface is a program that has a single
global environment

declare XY

* Augments (and overrides) the environment with new
mappings for X and Y

{Browse X}

 Inspects the store and shows partial values, and
incremental changes

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 21

The interactive interface (declare)

procedure Store
Browse = value
R
—
—
Environment \@

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

declare XY

procedure Store
Browse ——1 value
r ——
, E] \

Envuonmen\\n

unbound | i

unbound | Xy

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 23

Syntactic extensions

* Nested partial values
— person(name: “George” age:25)
local A B in A=“George” B=25 person(name:A age:B) end
« Implicit variable initialization
local (pattern) = (expression) in (statement) cnd
* Example:
assume T has been defined, then
local tree(key:A left:B right:C value:D) = T in (statement) end
is the same as:
local ABCDin

= tree(key:A left:B right:C value:D) <statement>
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Extracting fields in local statement

declare T

T = tree(key:seif age:48 profession:professor)

local
tree(key:A..)=T

(statement)

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 25

Nested if and case statements

« Observe a pair notation is: 1#2, is the tuple ‘#’(1 2)
case Xs#Ys
of nil#Ys then (s},
[I Xs#nil then (s),
[(X|Xr)# (Y|Yr) andthen X=<Y then (s),
else (s), end

« Is translated into
case Xs of nil then (s),
else

case Ys of nil then (s),
else
case Xs of X|Xr then
case Ys of Y|Yr then
if X=<Y then (s, else (s), end
else (s), end
else (s, end
end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 26

Expressions

An expression is a sequence of operations that returns a
value

A statement is a sequence of operations that does not
return a value. Its effect is on the store, or outside of the
system (e.g. read/write a file)

11*11 X=11*11
expression
P statement
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 27

Functions as linguistic abstraction

+ R={FX1..Xn}
+ {FX1..XnR}
fun {F X1 ... Xn} proc {F X1 ... Xn R}
(statement) (statement) .
(expression) R = (expression)
end end
%—/
{statement) (statement)
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 28

Nesting in data structures

Ys = {F X}|{Map Xr F}
Is unnested to:
local Y Yrin
Ys=Y|Yr
{FXY}
{Map Xr F Yr}
end
The unnesting of the calls occurs after the data structure

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 29

Functional nesting

» Nested notations that allows expressions as well as
statements

* localRin
{FX1..XnR}

{QR..}
end

+ Is written as (equivalent to):
« {Q{FX1..Xn}..}

exprgssion
—_—

statement

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 30

Conditional expressions

R =if {expr), then if (expr), then
(expr), R = (expr),
else (expr); end else R = (expr), end
) R
(expression) (statement)
fun_{Max XY} proc {Max X Y R}
if X>=Y then X R= (ifX>=Y then X
else Y end elseYend)
end end
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 31

Example

fun_{Max XY} proc {Max X Y R}
if X>=Y then X R= (ifX>=Y then X
else Y end elseYend)
end end

proc {Max XY R}
if X>=Y then R =X
else R=Y end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 32

andthen and orelse

Function calls

- Observe
if (expr), then local R1R21in
expr), R1={F2X}
expr), andthen (expr (F1{F2X}{F3Y
{exen (exen, else false end F1F2xFs) R2={F3Y}
{F1R1R2}
end
if (expr), then)
t The arguments of a function are evaluated
(expr), orelse (expr), fue first from left to right
else (expr), end
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 33 C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 34
A complete example Exceptions

fun {Map Xs F} proc {Map Xs F Ys}
case Xs case Xs
of nil then nil of nil then Ys = nil
[1 X|Xr then {F X}|{Map Xr F} [1 X|XrthenY Yrin
end Ys=Y|Yr
end {FXY}
{Map Xr F Yr}
end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 35

* How to handle exceptional situations in the program?
» Examples:
— divide by 0
— opening a nonexistent file
* Some errors are programming errors
+ Some errors are imposed by the external environment

+ Exception handling statements allow programs to handle
and recover from errors

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 36

Exceptions

* The error confinement principle:
— Define your program as a structured layers of components
— Errors are visible only internally and a recovery procedure corrects
the errors: either errors are not visible at the component boundary
or are reported (nicely) to a higher level
+ In one operation, exit from arbitrary depth of nested
contexts
— Essential for program structuring; else programs get complicated
(use boolean variables everywhere, etc.)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 37

Basic concepts

* A program that encounters an error (exception) should
transfer execution to another part, the exception handler
and give it a (partial) value that describes the error

« try (s), catch {x) then (s), end
+ raise (x) end
 Introduce an exception marker on the semantic stack

+ The execution is equivalent to (s), if it executes without
raising an error

+ Otherwise, (s), is aborted and the stack is popped up to the
marker, the error value is transferred through (), and (s),
is executed

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 38

Exceptions (Example)

fun {Eval E}
if {IsNumber E} then E
else plus

case E /\

of plus(X Y) then {Eval X}+{Eval Y} e p
[] times(X'Y) then {Eval X}*{Eval Y}
else raise illFormedExpression(E) end /\
end

end
end

6 4

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 39

Exceptions (Example)

try
{Browse {Eval plus(5 6) }}
{Browse {Eval plus(times(5 5) 6) }
{Browse {Eval plus(minus(5 5) 6) }}
catch illFormedExpression(E) then
{System.showlnfo "*** illegal expresion ****" # E}

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 40

Try semantics

+ The semantic statement is
(try {s), catch (y) then (s), end, E)
+ Push the semantic statement (catch (y) then (s), end, E)
on ST

« Push ({s), , E)on ST
+ Continue to next execution step

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 41

Raise semantics

» The semantic statement is
(raise (x) end, E)
* Pop elements off ST looking for a caich statement:
— If a catch statement is found, pop it from the stack

— If the stack is emptied and no catch is found, then stop execution
with the error message ”Uncaught exception”

+ Let (catch (y) then (s) end, E,) be the catch statement that is
found

* Push ((s), E,+{<y>—E(<x>)}) on ST
+ Continue to next execution step

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 42

Catch semantics

+ The semantic statement is
(catch (x) then (s) end, E)
+ Continue to next execution step (like skip)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 43

Full exception syntax

» Exception statements (expressions) with multiple patterns
and finally clause

» Example:
#H = {OpenfFile "xxxxx"}

try

{ProcessFile FH}
catch X then

{System.showInfo "***** Exception when processing *****” # X}
finally {CloseFile FH} end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 44

Exercises

53. VRH Exercise 2.9.3 (page 107).

54. VRH Exercise 2.9.7 (page 108) —translate example to
kernel language and execute using operational semantics.

55. Write an example of a program that suspends. Now, write
an example of a program that never terminates. Use the
operational semantics to prove suspension or non-
termination.

56. *VRH Exercise 2.9.12 (page 110).

57. *Change the semantics of the case statement, so that
patterns can contain variable labels and variable feature
names.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 45

Exercises

58. *Restrict the kernel language to make it strictly functional
(i.e., without dataflow variables)
— Language similar to Scheme (dynamically typed functional

language)

This is done by disallowing variable declaration (without
initialization) and disallowing procedural syntax
— Only use implicit variable initialization
— Only use functions

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 46

