Declarative Computation Model

Kernel language semantics revisited (VRH 2.4.5)
From kernel to practical language (VRH 2.6)
Exceptions (VRH 2.7)

Carlos Varela
RPI
October 15, 2007

Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
ucL

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 1

Sequential declarative computation
model

* The kernel language semantics revisited.
— Suspendable statements:
. if,
* case,
« procedure application.
— Procedure values
— Procedure introduction
— Procedure application.
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Conditional

» The semantic statement is
(if (x) then (s,) else (s,) end , E)
+ If the activation condition (E({x)) is determined) is true:
— If E({x)) is not Boolean (true, false), raise an error
— E((x)) is true, push ({(s;) , E) on the stack
— E({x)) is false, push ({(s,) , £) on the stack
+ If the activation condition (E({x)) is determined) is false:
— Suspend
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Case statement

+ The semantic statement is
(case (x) of () ({f1) + (k) - ) + (o)
then (s;)
else (s,)end, E)
+ If the activation condition (E({x)) is determined) is true:
— If E({x)) is a record, the label of E((x)) is (/) and
its arity is [{f;) ... (/)]
push (local (x;) = (x). {(f}) ... {x,) = {x). {f,) in (sy) end, E)

on the stack
— Otherwise, push ((s,), E) on the stack
+ If the activation condition (E({X)) is determined) is false:
— Suspend
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Procedure values

+ Constructing a procedure value in the store is not simple
because a procedure may have external references

local P Q in
Q =proc {$} {Browse hello} end
P =proc {$} {Q} end
local Q in
Q =proc {$} {Browse hi} end
{P}
end
end
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Procedure values (2)

TN

local P Qin proc {$} {Q} end Q—x,
Q =proc {$} {Browse hello} end
P=proc {$} {Q} end

local Q in ¥ (
Q = proc {$} {Browse hi} end 2 ’
P}
end
end proc {$} {Browse hello} end Browse — x,
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Procedure values (3)

The semantic statement is
(@) =100 5.0,) G} 9) . E) (proc5n) - 0}
(1) ... (v,,) are the (formal) parameters of the <Y>
procedure end
Other free identifiers in (s} are called external
references (z,) ... (z) CE)

These are defined by the environment £ where the
procedure is declared (lexical scoping)

The contextual environment of the procedure CE is
Eliey e

When the procedure is called CE is used to construct
the environment for execution of (s)
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Procedure introduction

» The semantic statement is
() =proc {8 (y,) ... (va)} (s) end, E)
» Create a contextual environment:
CE=E |{(::) ¢y Where (z)) ... (z,) are external references in (s).

+ Create a new procedure value of the form:
(proc {$ (y) ... (v} {s) end, CE) , refer to it by the variable x,

* Bind the store variable E({x)) to x,
+ Continue to next execution step
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Procedure application

* The semantic statement is

@) G}, B

+ If the activation condition (E({x)) is determined) is true:

— If E({x)) is not a procedure value, or it is a procedure
with arity that is not equal to », raise an error

IfE((x)) is (proc {$ (z,) ... (z,)} {s) end, CE),
(<Y> CE+ {(z)) = E(() - zo) = E(D})

on the stack
+ If the activation condition (E({X)) is determined) is false:
— Suspend
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Execution examples

local Max C in
proc {Max XY Z}
s (s); if X >=Y then Z=X else Z=Y end
(s) 4 (8 end

{Max 3 5C}
end
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Execution examples (2)

local Max C in

end
(s); {Max35C}
end

Initial state ([({s);, D)], D)
+ After local Max Cin ...
([(s)y {Max—m,C —c})], {m, c})
+ After Max binding
([(s)y {Max—m, C —c})],
{m = (proc{$ XYZ} (s)zend, D), c})

proc {Max XY Z}
(), <0s) { (s); ifX>=Y then Z=X else Z=Y end
1 2
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Execution examples (3)

local Max C in

end
(s); {Max35C}
end

proc {Max XY Z}
(), <0s) { (s); ifX>=Y then Z=X else Z=Y end
1 2

+ After Max binding
([(s)y {Max—m, C —c})],
{m = (proc{$ X Y Z} (s),end, &), c} )
* After procedure call
([(s)y X—=1,Y=>1,Z—c})],
{m = (proc{$ X Y Z} (s);end, D) , 1,=3, ,=5, ¢} )
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Execution examples (4)

local Max C in

end
(s), {Max 35C}
end

proc {Max XY Z}
(), <0s) { (s); if X>=Y then Z=X else Z=Y end
1 2

«  After procedure call
([(€s)y, (X1, Y =1y, Z—>c})],
{m=(proc{S X Y Z} (s)send , @) , ,=3, 1,=5, ¢} )
«  After T=(X>=Y)
([(€s)y, X1, Y > 1), Z—>c, T—>1})],
{m=(proc{S X Y Z} (s)send , @), 1,=3, 1,=5, ¢, t=false} )
(MZ=Y, X=14,Y =1, Z—>¢, T=>1})],
{m=(proc{S X Y Z} (s),end , @) , 1,=3, 1,=5, ¢, t=false} )

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 13

Execution examples (5)

local Max C in

end
(s), {Max 35 C}
end

proc {Max XY Z}
(), <0s) { (s); if X>=Y then Z=X else Z=Y end
1 2

c ([Z=Y, X=t,Y=1,,Z=>c, T—>1})],
{m = (proc{$ X Y Z} (s);end , @) , t,=3, 1,=5, c, t=false} )

* ([
{m = (proc{$ X Y Z} (s)send, @) , 1,=3, ,=5, ¢=5, t=false} )
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Procedures with external references

local LBY Cin
Y=5
(s)y proc {LB X Z}
(s), (s); if X >=Y then Z=X else Z=Y end
end
{LB3C}
end
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Procedures with external references

local LBY Cin
Y=5

proc {LBXZ
(s)y (s) (s); ifX>=Y then Z=X else Z=Y end
end

{LB3 C}
end

* The procedure value of LB is
« (proc{$ X Z} (s)yend , {Y = })
* Thestoreis {y =5, ...}
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Procedures with external references

local LBY Cin
Y=5

proc {LBXZ
(s)y (s) (s); ifX>=Y then Z=X else Z=Y end
end

{LB3C}
end

The procedure value of LB is

(proc{$ X Z} (s)send , {Y = y})

The store is {y =5, ...}

STACK: [({LBTC},{Y—=y,LB—=1,C—c, T—1})]
STORE: {y =5, Ib = (proc{$ X Z} (s)send, {Y = y}),t=3,¢c}
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Procedures with external references

local LBY Cin
Y=5

proc {LBXZ
(s)y (s) (s); ifX>=Y then Z=X else Z=Y end
end

{LB3C}
end

STACK: [( {LBTC} ,{Y—=y,LB—1b,C—>c,T—1})]
STORE: {y =5, Ib = (proc{$ X Z} (s)send, {Y = y}),t=3,¢c}
STACK: [({8);, {Y =y, X—=1,Z—c})]

STORE: {y =5, Ib = (proc{$ X Z} (s)send, {Y = y}),t=3,¢c}
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Procedures with external references

local LBY Cin
Y=5
proc {LBXZ
(s)y (s) <s>3 if X>=Y then Z=X else Z=Y end
end
{LB3C}
end

STACK: [({8);, {Y =y, X—=1,Z—c})]

STORE: {y =5, Ib = (proc{$ X Z} (s)send, {Y = y}),1=3,¢c}
STACK: [(Z=Y , {Y =y, X —=1,Z—c})]

STORE: {y =5, Ib = (proc{$ X Z} (s)send, {Y = y}),t=3,¢c}
STACK: [ ]

STORE: {y =5, Ib = (proc{$ X Z} (s)send, {Y = y}),t=3,c =5}
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From the kernel language
to a practical language

* Interactive interface
— the declare statement and the global environment
+ Extend kernel syntax to give a full, practical syntax
— nesting of partial values
— implicit variable initialization
— expressions
nesting the if and case statements
— andthen and orelse operations
» Linguistic abstraction
— Functions

» Exceptions
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The interactive interface (declare)

+ The interactive interface is a program that has a single
global environment

declare XY

* Augments (and overrides) the environment with new
mappings for X and Y

{Browse X}

 Inspects the store and shows partial values, and
incremental changes
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The interactive interface (declare)

procedure Store
Browse = value
R
—
—
Environment \@
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declare XY

procedure Store
Browse ——1 value
r ——
, E] \

Envuonmen\\n

unbound | i

unbound | Xy
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Syntactic extensions

* Nested partial values
— person(name: “George” age:25)
local A B in A=“George” B=25 person(name:A age:B) end
« Implicit variable initialization
local (pattern) = (expression) in (statement) cnd
* Example:
assume T has been defined, then
local tree(key:A left:B right:C value:D) = T in (statement) end
is the same as:
local ABCDin

= tree(key:A left:B right:C value:D) <statement>
end
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Extracting fields in local statement

declare T

T = tree(key:seif age:48 profession:professor)

local
tree(key:A..)=T

(statement)

end
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Nested if and case statements

« Observe a pair notation is: 1#2, is the tuple ‘#’(1 2)
case Xs#Ys
of nil#Ys then (s},
[I Xs#nil then (s),
[ (X|Xr)# (Y|Yr) andthen X=<Y then (s),
else (s), end

« Is translated into
case Xs of nil then (s),
else

case Ys of nil then (s),
else
case Xs of X|Xr then
case Ys of Y|Yr then
if X=<Y then (s, else (s), end
else (s), end
else (s, end
end
end
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Expressions

An expression is a sequence of operations that returns a
value

A statement is a sequence of operations that does not
return a value. Its effect is on the store, or outside of the
system (e.g. read/write a file)

11*11 X=11*11
expression
P statement
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Functions as linguistic abstraction

+ R={FX1..Xn}
+ {FX1..XnR}
fun {F X1 ... Xn} proc {F X1 ... Xn R}
(statement) (statement) .
(expression) R = (expression)
end end
%—/
{statement) (statement)
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Nesting in data structures

Ys = {F X}|{Map Xr F}
Is unnested to:
local Y Yrin
Ys=Y|Yr
{FXY}
{Map Xr F Yr}
end
The unnesting of the calls occurs after the data structure
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Functional nesting

» Nested notations that allows expressions as well as
statements

* localRin
{FX1..XnR}

{QR..}
end

+ Is written as (equivalent to):
« {Q{FX1..Xn}..}

exprgssion
—_—

statement
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Conditional expressions

R =if {expr), then if (expr), then
(expr), R = (expr),
else (expr); end else R = (expr), end
) R
(expression) (statement)
fun_{Max XY} proc {Max X Y R}
if X>=Y then X R= (ifX>=Y then X
else Y end elseYend)
end end
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Example

fun_{Max XY} proc {Max X Y R}
if X>=Y then X R= (ifX>=Y then X
else Y end elseYend)
end end

proc {Max XY R}
if X>=Y then R =X
else R=Y end
end
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andthen and orelse

Function calls

- Observe
if (expr), then local R1R21in
expr), R1={F2X}
expr), andthen (expr ( F1{F2X}{F3Y
{exen (exen, else false end F1F2xFs ) R2={F3Y}
{F1R1R2}
end
if (expr), then )
t The arguments of a function are evaluated
(expr), orelse (expr), fue first from left to right
else (expr), end
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A complete example Exceptions

fun {Map Xs F} proc {Map Xs F Ys}
case Xs case Xs
of nil then nil of nil then Ys = nil
[1 X|Xr then {F X}|{Map Xr F} [1 X|XrthenY Yrin
end Ys=Y|Yr
end {FXY}
{Map Xr F Yr}
end
end
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* How to handle exceptional situations in the program?
» Examples:
— divide by 0
— opening a nonexistent file
* Some errors are programming errors
+ Some errors are imposed by the external environment

+ Exception handling statements allow programs to handle
and recover from errors
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Exceptions

* The error confinement principle:
— Define your program as a structured layers of components
— Errors are visible only internally and a recovery procedure corrects
the errors: either errors are not visible at the component boundary
or are reported (nicely) to a higher level
+ In one operation, exit from arbitrary depth of nested
contexts
— Essential for program structuring; else programs get complicated
(use boolean variables everywhere, etc.)
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Basic concepts

* A program that encounters an error (exception) should
transfer execution to another part, the exception handler
and give it a (partial) value that describes the error

« try (s), catch {x) then (s), end
+ raise (x) end
 Introduce an exception marker on the semantic stack

+ The execution is equivalent to (s), if it executes without
raising an error

+ Otherwise, (s), is aborted and the stack is popped up to the
marker, the error value is transferred through (), and (s),
is executed
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Exceptions (Example)

fun {Eval E}
if {IsNumber E} then E
else plus

case E /\

of plus(X Y) then {Eval X}+{Eval Y} e p
[] times(X'Y) then {Eval X}*{Eval Y}
else raise illFormedExpression(E) end /\
end

end
end

6 4
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Exceptions (Example)

try
{Browse {Eval plus(5 6) }}
{Browse {Eval plus(times(5 5) 6) }
{Browse {Eval plus(minus(5 5) 6) }}
catch illFormedExpression(E) then
{System.showlnfo "*** illegal expresion ****" # E}

end
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Try semantics

+ The semantic statement is
(try {s), catch (y) then (s), end, E)
+ Push the semantic statement (catch (y) then (s), end, E)
on ST

« Push ({s), , E)on ST
+ Continue to next execution step
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Raise semantics

» The semantic statement is
(raise (x) end, E)
* Pop elements off ST looking for a caich statement:
— If a catch statement is found, pop it from the stack

— If the stack is emptied and no catch is found, then stop execution
with the error message ”Uncaught exception”

+ Let (catch (y) then (s) end, E,) be the catch statement that is
found

* Push ((s), E,+{<y>—E(<x>)}) on ST
+ Continue to next execution step
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Catch semantics

+ The semantic statement is
(catch (x) then (s) end, E)
+ Continue to next execution step (like skip)
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Full exception syntax

» Exception statements (expressions) with multiple patterns
and finally clause

» Example:
#H = {OpenfFile "xxxxx"}

try

{ProcessFile FH}
catch X then

{System.showInfo "***** Exception when processing *****” # X}
finally {CloseFile FH} end
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Exercises

53. VRH Exercise 2.9.3 (page 107).

54. VRH Exercise 2.9.7 (page 108) —translate example to
kernel language and execute using operational semantics.

55. Write an example of a program that suspends. Now, write
an example of a program that never terminates. Use the
operational semantics to prove suspension or non-
termination.

56. *VRH Exercise 2.9.12 (page 110).

57. *Change the semantics of the case statement, so that
patterns can contain variable labels and variable feature
names.
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Exercises

58. *Restrict the kernel language to make it strictly functional
(i.e., without dataflow variables)
— Language similar to Scheme (dynamically typed functional

language)

This is done by disallowing variable declaration (without
initialization) and disallowing procedural syntax
—  Only use implicit variable initialization
—  Only use functions
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