
CSCI.4210 Operating Systems
Fall, 2009

Programming Assignment 7
Writing an HTTP client and server

This is a two part assignment. You can do it in either Unix or Windows. You will write an
HTTP (Hypertext Transfer Protocol) client and server for Unix and for Windows or NT. An
HTTP client is commonly called a web browser and and HTTP server is commonly called a
web server. Any of the standard web browsers (Firefox, Explorer, Chrome, Safari etc) should
be able to communicate with your server and your client should be able to communicate with
any web server on the planet.

The HTTP Protocol is very simple. The client can send one of only three commands, GET,
HEAD, and POST. Your client and server only need to handle GET commands. These are
requests for documents, and the server returns the requested document or an error message
and code.

The format of a get command is GET documentname HTTP/1.1 followed by zero or more
header lines which provide additional information. Your server can ignore all of the header
information (although you have to read it). The document string must start with a slash
(which indicates the home directory of the server).

I ran my server on ashley at port 12345, and contacted it using firefox by typing this url.
http://ashley.cs.rpi.edu:12345

Here is what firefox sent to my server

GET / HTTP/1.1

Host: ashley.cs.rpi.edu:12345

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.5) Gecko/20091102 Firefox/3.5.5 (.NET CLR 3.5.30729)

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Connection: keep-alive

The format of the reply from the server to the client (browser) is
status line
headers (0 or more)
blank line
body

1



The status line consists of the keyword HTTP/1.1 followed by a code, followed by a string
indicating the result. There are only two codes that your server needs to provide

200 OK

404 NOT FOUND

When I pointed my web client to www.rpi.edu here is what was sent back.

HTTP/1.1 200 OK

Date: Fri, 26 Mar 2004 15:22:07 GMT

Server: Apache/1.3.27 (Unix) (Red-Hat/Linux) mod_ssl/2.8.12 OpenSSL/0.9.6b mod_ldap_userdir/0.9

Last-Modified: Wed, 24 Mar 2004 21:03:51 GMT

ETag: "7a3a03a0-6c84-4061f7b7"

Accept-Ranges: bytes

Content-Length: 27780

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Type: text/html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

This waa s followed by the html file.

The Server

Your server should have several html files in its current directory. If the client sends a /
as the document requested, return the names of all files in the working directory. (Hint:
run ls or dir, redirecting the output to a file, then send the file, then delete the file. You
can do this with the system command.). If the brower requests a file, return that file.
If the browser requests a file which does not exist, return a 404 error code. Your server
should always include the Content-Length and Content-Type headers. The argument for
Content-Length is the number of bytes in the body. The argument for Content-Type can
be either text/html if the document is an html document or text/plain for a plain text
document (such as the table of contents). The HTTP protocol has lots of other document
types as well, but your server does not need to provide them. You may provide other headers
if you wish.

Your server should keep a log of all connections. This should be written to a file called
weblog. It should contain the IP address of each client in dotted decimal form, and a
verbatim transcript of everything which the client sent. The log does not need to record any
information about what was returned to the client.

Your Unix server should run as a daemon, not connected to a terminal. Once a connection
is accepted, the server should create a new thread to handle the reading and writing for each

2



connection. It should be a threaded server, that is, it should run the communication for each
connection in a separate thread.

Alert: Make sure that you kill your server after you are through testing it, because it could
be a security loophole.

Your server should take one argument, the port number.

The Client

The client should take one, two, or three arguments. The first argument is the url where the
server is running. The second optional argument is a file name on that server, and the third
is the port number. If the port number is missing, the default is 80. If both the second and
third args are missing, the filename is / and the port is 80. Note that with this protocol, if
you pass in a port number, you must have a second argument.

Your client should display a brief message on the terminal when a connection has been
established. It should write everything which the server returns (including headers) to a file
called webscript (emptying the file if it already exists, creating it otherwise). When the
server is done, your client should display a message indicating how many bytes were written
to webscript and terminate.

Alert: Do not use remote as your machine name, use the actual name monica.cs.rpi.edu,
or whatever. You can get the name of the machine that you are on with the hostname

command. The two programs will be graded independently. The server will be weighted 1.5
times as heavily as the client.

Grading:
Server
Compiles (sincere attempt) 40%
Runs as a daemon 5%
Accepts connections 10%
Returns appropriate data 25%
Runs each connection in a separate thread 10%
Is well commented and well designed 10%
Client
Compiles (sincere attempt) 40%
Parses command line correctly 25%
Establishes connections 20%
Writes data correctly 5%
Well commented, well designed 10%

The project is due at 11:59PM on Tuesday Dec 8.

3


