
1

C. Varela 1

Logic Programming (PLP 11)
Prolog Imperative Control Flow:

 Backtracking Cut, Fail, Not

Carlos Varela
Rennselaer Polytechnic Institute

September 8, 2009

C. Varela 2

Backtracking

• Forward chaining goes from axioms forward into goals.

• Backward chaining starts from goals and works backwards
to prove them with existing axioms.

C. Varela 3

Backtracking example
rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), cold(X).

snowy(C)

snowy(X)

AND

OR

rainy(X) cold(X)

rainy(seattle) rainy(rochester)
cold(rochester)

_C = _X

X = seattle

cold(seattle)
fails;
backtrack.

X = rochester

success

C. Varela 4

Imperative Control Flow

• Programmer has explicit control on backtracking process.

Cut (!)

• As a goal it succeeds, but with a side effect:

– Commits interpreter to choices made since unifying parent goal
with left-hand side of current rule.

C. Varela 5

Cut (!) Example

rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), !, cold(X).

C. Varela 6

Cut (!) Example
rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), !, cold(X).

snowy(C)

snowy(X)

AND

OR

rainy(X) cold(X)

rainy(seattle) rainy(rochester)
cold(rochester)

_C = _X

X = seattle

cold(seattle)
fails; no
backtracking
to rainy(X).

GOAL FAILS.

!

2

C. Varela 7

Cut (!) Example 2

rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), !, cold(X).
snowy(troy).

C. Varela 8

Cut (!) Example 2
rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), !, cold(X).
snowy(troy). snowy(C)

snowy(X)

AND

OR

rainy(X) cold(X)

rainy(seattle) rainy(rochester)
cold(rochester)

_C = _X

X = seattle

 C = troy FAILS
snowy(X) is committed

to bindings (X =
seattle).

GOAL FAILS.

!

OR

snowy(troy)

C = troy

C. Varela 9

Cut (!) Example 3

rainy(seattle) :- !.
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), cold(X).
snowy(troy).

C. Varela 10

Cut (!) Example 3
rainy(seattle) :- !.
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), cold(X).
snowy(troy). snowy(C)

snowy(X)

AND

OR

rainy(X) cold(X)

rainy(seattle) rainy(rochester)
cold(rochester)

_C = _X

X = seattle

 C = troy SUCCEEDS
Only rainy(X) is

committed to
bindings (X =
seattle).

!

OR

snowy(troy)

C = troy

C. Varela 11

Cut (!) Example 4

rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- !, rainy(X), cold(X).

C. Varela 12

Cut (!) Example 4
rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- !, rainy(X), cold(X).

snowy(C)

snowy(X)

AND

OR

rainy(X) cold(X)

rainy(seattle) rainy(rochester)
cold(rochester)

_C = _X

X = seattle

cold(seattle)
fails;
backtrack.

X = rochester

success

!

3

C. Varela 13

Cut (!) Example 5

rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), cold(X), !.

C. Varela 14

Cut (!) Example 5
rainy(seattle).
rainy(rochester).
cold(rochester).
snowy(X) :- rainy(X), cold(X), !.

snowy(C)

snowy(X)

AND

OR

rainy(X) cold(X)

rainy(seattle) rainy(rochester)
cold(rochester)

_C = _X

X = seattle
X = rochester

success

!

C. Varela 15

First-Class Terms

Succeeds if T is a term with
functor F and arity A.

functor(T,F,A)

Removes predicate from
database.

retract(P)

Adds predicate to database.assert(P)

Invoke predicate as a goal.call(P)

C. Varela 16

not P is not ¬P

• In Prolog, the database of facts and rules includes a list of things
assumed to be true.

• It does not include anything assumed to be false.

• Unless our database contains everything that is true (the closed-world
assumption), the goal not P (or \+ P in some Prolog
implementations) can succeed simply because our current knowledge
is insufficient to prove P.

C. Varela 17

More not vs ¬

?- snowy(X).
X = rochester

?- not(snowy(X)).
no

Prolog does not reply: X = seattle.

The meaning of not(snowy(X)) is:

¬∃X [snowy(X)]
 rather than:

∃X [¬snowy(X)]

C. Varela 18

Fail, true, repeat

Always succeeds, provides
infinite choice points.

repeat

Always succeeds.true

Fails current goal.fail

repeat.

repeat :- repeat.

4

C. Varela 19

not Semantics

not(P) :- call(P), !, fail.
not(P).

Definition of not in terms of failure (fail) means that variable
bindings are lost whenever not succeeds, e.g.:

?- not(not(snowy(X))).
X=_G147

C. Varela 20

Conditionals and Loops
statement :- condition, !, then.

statement :- else.

natural(1).
natural(N) :- natural(M), N is M+1.

my_loop(N) :- natural(I), I<=N,
write(I), nl,
I=N,
!, fail.

Also called generate-and-test.

C. Varela 21

Prolog lists

• [a,b,c] is syntactic sugar for:

.(a,.(b,.(c, [])))

where [] is the empty list, and . is a built-in cons-like functor.

• [a,b,c] can also be expressed as:

[a | [b,c]] , or
[a, b | [c]] , or
[a,b,c | []]

C. Varela 22

Prolog lists append example

append([],L,L).
append([H|T],A, [H,L]) :- append(T,A,L).

C. Varela 23

Exercises

8. What do the following Prolog queries do?

?- repeat.

?- repeat, true.

?- repeat, fail.

Corroborate your thinking with a Prolog interpreter.
9. Draw the search tree for the query “not(not(snowy(City)))”.

When are variables bound/unbound in the search/backtracking
process?

10. PLP Exercise 11.6 (pg 571).
11. PLP Exercise 11.7 (pg 571).

