
1

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 1

Declarative Programming Techniques
 Accumulators, Difference Lists (VRH 3.4.3-3.4.4)

Carlos Varela
RPI

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

September 15, 2009

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Accumulators
• Accumulator programming is a way to handle state in

declarative programs. It is a programming technique that
uses arguments to carry state, transform the state, and pass
it to the next procedure.

• Assume that the state S consists of a number of
components to be transformed individually:

S = (X,Y,Z,...)
• For each predicate P, each state component is made into a

pair, the first component is the input state and the second
component is the output state after P has terminated

• S is represented as
(Xin, Xout, Yin, Yout, Zin, Zout,...)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 3

A Trivial Example in Prolog
increment(N0,N) :-

N is N0 + 1.

square(N0,N) :-

N is N0 * N0.

inc_square(N0,N) :-

increment(N0,N1),

square(N1,N).

increment takes N0 as the input
and produces N as the output by
adding 1 to N0.

square takes N0 as the input and
produces N as the output by
multiplying N0 to itself.

inc_square takes N0 as the input
and produces N as the output by
using an intermediate variable N1 to
carry N0+1 (the output of
increment) and passing it as
input to square. The pairs N0-N1
and N1-N are called accumulators.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 4

A Trivial Example in Oz
proc {Increment N0 N}

N = N0 + 1

end

proc {Square N0 N}

N = N0 * N0
end

proc {IncSquare N0 N}

N1 in
{Increment N0 N1}

{Square N1 N}

end

Increment takes N0 as the input
and produces N as the output by
adding 1 to N0.

Square takes N0 as the input and
produces N as the output by
multiplying N0 to itself.

IncSquare takes N0 as the input
and produces N as the output by
using an intermediate variable N1 to
carry N0+1 (the output of
Increment) and passing it as
input to Square. The pairs N0-N1
and N1-N are called accumulators.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 5

Accumulators
• Assume that the state S consists of a number of components to be

transformed individually:
S = (X,Y,Z)

• Assume P1 to Pn are procedures in Oz

proc {P X0 X Y0 Y Z0 Z}
:

{P1 X0 X1 Y0 Y1 Z0 Z1}
{P2 X1 X2 Y1 Y2 Z1 Z2}

:
{Pn Xn-1 X Yn-1 Y Zn-1 Z}

end
• The procedural syntax is easier to use if there is more than one

accumulator

accumulator

The same
concept

applies to
predicates in

Prolog

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 6

MergeSort Example
• Consider a variant of MergeSort with accumulator
• proc {MergeSort1 N S0 S Xs}

– N is an integer,
– S0 is an input list to be sorted
– S is the remainder of S0 after the first N elements are sorted
– Xs is the sorted first N elements of S0

• The pair (S0, S) is an accumulator
• The definition is in a procedural syntax in Oz because it

has two outputs S and Xs

2

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 7

Example (2)
fun {MergeSort Xs}

 {MergeSort1 {Length Xs} Xs _ Ys}

 Ys

end

proc {MergeSort1 N S0 S Xs}
 if N==0 then S = S0 Xs = nil

 elseif N ==1 then X in X|S = S0 Xs=[X]

 else %% N > 1

local S1 Xs1 Xs2 NL NR in

 NL = N div 2
 NR = N - NL

 {MergeSort1 NL S0 S1 Xs1}

 {MergeSort1 NR S1 S Xs2}

 Xs = {Merge Xs1 Xs2}
 end

 end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 8

MergeSort Example in Prolog
mergesort(Xs,Ys) :-

 length(Xs,N),

 mergesort1(N,Xs,_,Ys).

mergesort1(0,S,S,[]) :- !.
mergesort1(1,[X|S],S,[X]) :- !.

mergesort1(N,S0,S,Xs) :-

 NL is N // 2,

 NR is N - NL,

 mergesort1(NL,S0,S1,Xs1),
 mergesort1(NR,S1,S,Xs2),

 merge(Xs1,Xs2,Xs).

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 9

Multiple accumulators
• Consider a stack machine for evaluating

arithmetic expressions
• Example: (1+4)-3
• The machine executes the following

instructions
push(1)
push(4)
plus
push(3)
minus

 4

 1

 5 3

 5

 2

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 10

Multiple accumulators (2)
• Example: (1+4)-3
• The arithmetic expressions are represented as trees:

minus(plus(1 4) 3)
• Write a procedure that takes arithmetic expressions

represented as trees and output a list of stack machine
instructions and counts the number of instructions

proc {ExprCode Expr Cin Cout Nin Nout}

• Cin: initial list of instructions
• Cout: final list of instructions
• Nin: initial count
• Nout: final count

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 11

Multiple accumulators (3)
proc {ExprCode Expr C0 C N0 N}
 case Expr
 of plus(Expr1 Expr2) then C1 N1 in
 C1 = plus|C0
 N1 = N0 + 1
 {SeqCode [Expr2 Expr1] C1 C N1 N}
 [] minus(Expr1 Expr2) then C1 N1 in
 C1 = minus|C0
 N1 = N0 + 1
 {SeqCode [Expr2 Expr1] C1 C N1 N}
 [] I andthen {IsInt I} then
 C = push(I)|C0
 N = N0 + 1
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 12

Multiple accumulators (4)
proc {ExprCode Expr C0 C N0 N}
 case Expr
 of plus(Expr1 Expr2) then C1 N1 in
 C1 = plus|C0
 N1 = N0 + 1
 {SeqCode [Expr2 Expr1] C1 C N1 N}
 [] minus(Expr1 Expr2) then C1 N1 in
 C1 = minus|C0
 N1 = N0 + 1
 {SeqCode [Expr2 Expr1] C1 C N1 N}
 [] I andthen {IsInt I} then
 C = push(I)|C0
 N = N0 + 1
 end
end

proc {SeqCode Es C0 C N0 N}
 case Es
 of nil then C = C0 N = N0
 [] E|Er then N1 C1 in
 {ExprCode E C0 C1 N0 N1}
 {SeqCode Er C1 C N1 N}
 end
end

3

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 13

Shorter version (4)
proc {ExprCode Expr C0 C N0 N}
 case Expr

 of plus(Expr1 Expr2) then

 {SeqCode [Expr2 Expr1] plus|C0 C N0 + 1 N}

 [] minus(Expr1 Expr2) then

 {SeqCode [Expr2 Expr1] minus|C0 C N0 + 1 N}
 [] I andthen {IsInt I} then

 C = push(I)|C0

 N = N0 + 1

 end
end

proc {SeqCode Es C0 C N0 N}
 case Es
 of nil then C = C0 N = N0
 [] E|Er then N1 C1 in
 {ExprCode E C0 C1 N0 N1}
 {SeqCode Er C1 C N1 N}
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 14

Functional style (4)
fun {ExprCode Expr t(C0 N0) }
 case Expr

 of plus(Expr1 Expr2) then

 {SeqCode [Expr2 Expr1] t(plus|C0 N0 + 1)}

 [] minus(Expr1 Expr2) then

 {SeqCode [Expr2 Expr1] t(minus|C0 N0 + 1)}
 [] I andthen {IsInt I} then

 t(push(I)|C0 N0 + 1)

 end

end

fun {SeqCode Es T}
 case Es
 of nil then T
 [] E|Er then

T1 = {ExprCode E T} in
 {SeqCode Er T1}
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 15

Difference lists in Oz
• A difference list is a pair of lists, each might have an

unbound tail, with the invariant that one can get the second
list by removing zero or more elements from the first list

• X # X % Represent the empty list
• nil # nil % idem
• [a] # [a] % idem
• (a|b|c|X) # X % Represents [a b c]
• [a b c d] # [d] % idem

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 16

Difference lists in Prolog
• A difference list is a pair of lists, each might have an

unbound tail, with the invariant that one can get the second
list by removing zero or more elements from the first list

• X , X % Represent the empty list
• [] , [] % idem
• [a] , [a] % idem
• [a,b,c|X] , X % Represents [a,b,c]
• [a,b,c,d] , [d] % idem

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 17

Difference lists in Oz (2)
• When the second list is unbound, an append operation with

another difference list takes constant time
• fun {AppendD D1 D2}

S1 # E1 = D1
S2 # E2 = D2

in E1 = S2
S1 # E2

end

• local X Y in {Browse {AppendD (1|2|3|X)#X (4|5|Y)#Y}} end
• Displays (1|2|3|4|5|Y)#Y

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 18

Difference lists in Prolog (2)
• When the second list is unbound, an append operation with another difference

list takes constant time

append_dl(S1,E1, S2,E2, S1,E2) :- E1 = S2.

• ?- append_dl([1,2,3|X],X, [4,5|Y],Y, S,E).

Displays
X = [4, 5|_G193]
Y = _G193
S = [1, 2, 3, 4, 5|_G193]
E = _G193 ;

4

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 19

A FIFO queue
with difference lists (1)

• A FIFO queue is a sequence of elements with an insert and a delete operation.
– Insert adds an element to one end and delete removes it from the other end

• Queues can be implemented with lists. If L represents the queue content, then
inserting X gives X|L and deleting X gives {ButLast L X} (all elements but
the last).

– Delete is inefficient: it takes time proportional to the number of queue elements
• With difference lists we can implement a queue with constant-time insert and

delete operations
– The queue content is represented as q(N S E), where N is the number of elements

and S#E is a difference list representing the elements

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 20

A FIFO queue
with difference lists (2)

• Inserting ‘b’:
– In: q(1 a|T T)

– Out: q(2 a|b|U U)

• Deleting X:
– In: q(2 a|b|U U)

– Out: q(1 b|U U)
and X=a

• Difference list allows
operations at both ends

• N is needed to keep track
of the number of queue
elements

fun {NewQueue} X in q(0 X X) end

fun {Insert Q X}
case Q of q(N S E) then E1 in E=X|E1 q(N+1 S E1) end

end

fun {Delete Q X}
case Q of q(N S E) then S1 in X|S1=S q(N-1 S1 E) end

end

fun {EmptyQueue} case Q of q(N S E) then N==0 end end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 21

Flatten (revisited)

fun {Flatten Xs}
case Xs
 of nil then nil
 [] X|Xr andthen {IsLeaf X} then
 X|{Flatten Xr}
 [] X|Xr andthen {Not {IsLeaf X}} then
 {Append {Flatten X} {Flatten Xr}}
 end
end

Flatten takes a list of
elements and sub-lists
and returns a list with
only the elements, e.g.:

{Flatten [1 [2] [[3]]]} =
[1 2 3]

Let us replace lists by
difference lists and see
what happens.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 22

Flatten with difference lists (1)

• Flatten of nil is X#X
• Flatten of X|Xr is Y1#Y where

– flatten of X is Y1#Y2
– flatten of Xr is Y3#Y
– equate Y2 and Y3

• Flatten of a leaf X is (X|Y)#Y

Here is what it looks like
as text

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 23

Flatten with difference lists (2)
proc {FlattenD Xs Ds}

case Xs

 of nil then Y in Ds = Y#Y

 [] X|Xr then Y0 Y1 Y2 in
 Ds = Y0#Y2

 {FlattenD X Y0#Y1}
 {FlattenD Xr Y1#Y2}

 [] X andthen {IsLeaf X} then Y in (X|Y)#Y

 end

end

fun {Flatten Xs} Y in {FlattenD Xs Y#nil} Y end

Here is the new
program. It is much
more efficient than the
first version.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 24

Reverse (revisited)

• Here is our recursive reverse:

• Rewrite this with difference lists:
– Reverse of nil is X#X
– Reverse of X|Xs is Y1#Y, where

• reverse of Xs is Y1#Y2, and
• equate Y2 and X|Y

fun {Reverse Xs}
case Xs

of nil then nil

[] X|Xr then {Append {Reverse Xr} [X]}

end

end

5

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 25

Reverse with difference lists (1)

• The naive version takes
time proportional to the
square of the input length

• Using difference lists in
the naive version makes it
linear time

• We use two arguments Y1
and Y instead of Y1#Y

• With a minor change we
can make it iterative as
well

fun {ReverseD Xs}
proc {ReverseD Xs Y1 Y}

case Xs
of nil then Y1=Y
[] X|Xr then Y2 in
 {ReverseD Xr Y1 Y2}
 Y2 = X|Y
end

end
R in

{ReverseD Xs R nil}
R

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 26

Reverse with difference lists (2)

fun {ReverseD Xs}
proc {ReverseD Xs Y1 Y}

case Xs
of nil then Y1=Y
[] X|Xr then
 {ReverseD Xr Y1 X|Y}
end

end
R in
{ReverseD Xs R nil}
R

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 27

Difference lists: Summary

• Difference lists are a way to represent lists in the declarative model
such that one append operation can be done in constant time

– A function that builds a big list by concatenating together lots of little lists
can usually be written efficiently with difference lists

– The function can be written naively, using difference lists and append, and
will be efficient when the append is expanded out

• Difference lists are declarative, yet have some of the power of
destructive assignment

– Because of the single-assignment property of dataflow variables
• Difference lists originated from Prolog and are used to implement,

e.g., definite clause grammar rules for natural language parsing.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 28

Exercises

15. Draw the search trees for Prolog queries:
• append([1,2],[3],L).
• append(X,Y,[1,2,3]).
• append_dl([1,2|X],X,[3|Y],Y,S,E).

16. Rewrite the multiple accumulators example in Prolog.
17. VRH Exercise 3.10.11 (page 232)
18. VRH Exercise 3.10.14 (page 232)
19. VRH Exercise 3.10.15 (page 232)

