Declarative Programming Techniques
Accumulators, Difference Lists (VRH 3.4.3-3.4.4)
Carlos Varela
RPI
Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UcL

Accumulators

- Accumulator programming is a way to handle state in declarative programs. It is a programming technique that uses arguments to carry state, transform the state, and pass it to the next procedure.
- Assume that the state S consists of a number of components to be transformed individually:

$$
S=(X, Y, Z, \ldots)
$$

- For each predicate P , each state component is made into a pair, the first component is the input state and the second component is the output state after P has terminated
- S is represented as

$$
\left(X_{i n}, X_{o u t}, Y_{i n}, Y_{o u}, Z_{i n}, Z_{o u t}, \ldots\right)
$$

A Trivial Example in Prolog

| increment($\mathrm{N} 0, \mathrm{~N})$:- |
| :--- | :--- |
| N is $\mathrm{N} 0+1$. |\quad| increment takes N 0 as the input |
| :--- |
| and produces N as the output by |
| adding 1 to N 0. |

Accumulators

- Assume that the state S consists of a number of components to be transformed individually:

$$
S=(X, Y, Z)
$$

- Assume P 1 to Pn are procedures in Oz

accumulator	
$\operatorname{proc}\left\{\mathrm{P} \mathrm{X}_{0} \mathrm{XX}_{0} \mathrm{YZ}_{0} \mathrm{Z}\right\}$	The same concept
$\left\{\mathrm{P} 1 \mathrm{X}_{0} \mathrm{X}_{1} \mathrm{Y}_{0} \mathrm{Y}_{1} \mathrm{Z}_{0} \mathrm{Z}_{1}\right\}$	applies to
$\left\{\mathrm{P} 2 \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{Y}_{1} \mathrm{Y}_{2} \mathrm{Z}_{1} \mathrm{Z}_{2}\right\}$	predicates in
	Prolog
$\left\{\mathrm{Pn} \mathrm{X}_{\mathrm{n}-1} \mathrm{X} \mathrm{Y}_{\mathrm{n}-1} \mathrm{Y}_{\mathrm{n}-1} \mathrm{Z}\right.$ \}	

end

- The procedural syntax is easier to use if there is more than one accumulator
c. Varela; Adapted w/permission from S. Haridi and P. Van Roy

MergeSort Example

- Consider a variant of MergeSort with accumulator
- proc \{MergeSort1 N S0 S Xs \}
-N is an integer,
- S 0 is an input list to be sorted
- S is the remainder of S 0 after the first N elements are sorted
- Xs is the sorted first N elements of S 0
- The pair $(\mathrm{S} 0, \mathrm{~S})$ is an accumulator
- The definition is in a procedural syntax in Oz because it has two outputs S and Xs

Example (2)	
```fun {MergeSort Xs} {MergeSort1 {Length Xs} Xs _ Ys} Ys end```	```proc {MergeSort1 N S0 S Xs} if N==0 then S = SO Xs = nil elseif N==1 then X in X\|S = S0 Xs=[X] else %% N > 1 local S1 Xs1 Xs2 NL NR in NL = N div 2 NR=N - NL {MergeSort1 NL S0 S1 Xs1} {MergeSort1 NR S1 S Xs2} Xs={Merge Xs1 Xs2} end end end```
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy	


MergeSort Example in Prolog		
```mergesort(Xs,Ys) :- length(Xs,N), mergesort1(N,Xs,_,Ys).```	mergesort1 $(0, S, S,[)$ ) - !. mergesort1(1, $\mathrm{XX} \mid \mathrm{S}], \mathrm{S},[\mathrm{X}]):-$ !. mergesort1( $\mathrm{N}, \mathrm{SO}, \mathrm{S}, \mathrm{Xs}$ ) :-   NL is $\mathrm{N} / / 2$,   NR is $\mathrm{N}-\mathrm{NL}$,   mergesort1( $\mathrm{NL}, \mathrm{SO}, \mathrm{S} 1, \mathrm{Xs} 1$ ),   mergesort1(NR,S1,S,Xs2), merge(Xs1,Xs2,Xs).	
C. Varela; Adapte	Haridi and P. Van Roy	8

Multiple accumulators

Multiple accumulators (2)

- Consider a stack machine for evaluating arithmetic expressions
- Example: $(1+4)-3$
- The arithmetic expressions are represented as trees
minus(plus(14) 3)
- Write a procedure that takes arithmetic expressions
represented as trees and output a list of stack machine
instructions and counts the number of instructions
- The machine executes the following instructions
push(4)
push(4)
plus
push(3)
push(3)
minus

$$
\frac{4}{1} \Rightarrow 5
$$

proc \{ExprCode Expr Cin Cout Nin Nout\}

- Cin: initial list of instruction
- Cout: final list of instructions
- Nin: initial count
- Nout: final count

Multiple accumulators (3)

Multiple accumulators (4)
proc \{ExprCode Expr C0 C N0 N\}
f
C1 $=$ plus $\mid C 0$
$\mathrm{N} 1=\mathrm{N} 0+1$
\{SeqCode [Expr2 Expr1] C1 C N1 N\}
[] minus(Expr1 Expr2) then C1 N1 in
C1 $=$ minus $\mid C 0$
$\mathrm{N} 1=\mathrm{N} 0+1$
\{SeqCode [Expr2 Expr1] C1 C N1 N\}
[] I andthen $\{|\operatorname{lnt}|\}$ then
$\mathrm{C}=\operatorname{push}(\mathrm{l}) \mid \mathrm{CO}$
$\mathrm{N}=\mathrm{N} 0+1$
end
end
proc \{SeqCode Es CO C NO N\} case Es
of nil then $\mathrm{C}=\mathrm{CON}=\mathrm{N} 0$
7) E|Er then N1 C1 in
\{ExprCode E COC1 NO N1\}
\{SeqCode Er C1 CN1 N\} end end
minus(Expr1 Expr2) then C1 N1 in
C1 $=$ minus $\mid C 0$
$\mathrm{N} 1=\mathrm{N} 0+1$
\{SeqCode [Expr2 Expr1] C1 C N1 N\}
I I andthen $\{\mid$ IsInt I\} then
] I andthen $\{|\operatorname{sint}| \mid\}$
$\mathrm{N}=\mathrm{N} 0+1$
end
end
\{SeqCode [Expr2 Expr1]C1 C N1 N\}
minus(Expr1 Expr2) then C1 N1 in

proc \{ExprCode Expr COC NO N $\}$

case Expr
of plus(Expr1 Expr2) then C1 N1 in
C1 $=$ plus|C0
$\mathrm{N} 1=\mathrm{N} 0+1$
$\mathrm{N} 1=\mathrm{N} 0+1$
\{SeqCode [Ex

Difference lists in Oz

- A difference list is a pair of lists, each might have an unbound tail, with the invariant that one can get the second list by removing zero or more elements from the first list
- X \# X \% Represent the empty list
- nil \# nil $\%$ idem
- [a] \# [a] \% idem
- (a|b|c|X) \# X \% Represents [a b c]
- [abcd]\#[d] \% idem

Difference lists in Prolog

- A difference list is a pair of lists, each might have an unbound tail, with the invariant that one can get the second list by removing zero or more elements from the first list
- X , X \% Represent the empty list
- [], [] \% idem
- [a], [a] \%idem
- $[\mathrm{a}, \mathrm{b}, \mathrm{c} \mid \mathrm{X}], \mathrm{X} \quad \%$ Represents [a,b,c]
- [a,b,c,d],[d] \% idem

Difference lists in Oz (2)

- When the second list is unbound, an append operation with another difference list takes constant time
- fun \{AppendD D1 D2\}

$$
\begin{aligned}
& \text { S1 \# E1 }=\text { D1 } \\
& \text { S2 \# E2 }=\text { D2 }
\end{aligned}
$$

in $\mathrm{E} 1=\mathrm{S} 2$
S1 \# E2
end

- local X Y in \{Browse \{AppendD $(1|2| 3 \mid X) \# X(4|5| Y) \# Y\}\}$ end
- Displays ($1|2| 3|4| 5 \mid \mathrm{Y}$) \#Y

Difference lists in Prolog (2)

- When the second list is unbound, an append operation with another difference list takes constant time
append_dl(S1,E1, S2,E2, S1,E2) :- E1 = S2.
- ?- append_dl([1,2,3|X],X, [4,5|Y],Y, S,E).

Displays
$\mathrm{X}=\left[4,5 \mid _\mathrm{G} 193\right]$
$\mathrm{Y}=$ _G193
$\mathrm{S}=\left[1,2,3,4,\left.5\right|_{-} \mathrm{G} 193\right]$
$\mathrm{E}=$ _G193 ;

A FIFO queue
 with difference lists (1)

- A FIFO queue is a sequence of elements with an insert and a delete operation. Insert adds an element to one end and delete removes it from the other end
- Queues can be implemented with lists. If L represents the queue content, then inserting X gives $\mathrm{X} \mid \mathrm{L}$ and deleting X gives \{ButLast L$\}$ (all elements but the last).

Delete is inefficient: it takes time proportional to the number of queue elements

- With difference lists we can implement a queue with constant-time insert and delete operations

The queue content is represented as $q(N S E)$, where N is the number of elements and $\mathrm{S} \# \mathrm{E}$ is a difference list representing the elements
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Flatten (revisited)

```
fun {Flatten Xs}
    case Xs
    of nil then nil
    [] X|Xr andthen {IsLeaf X} then
    X|{Flatten Xr}
    [] X|Xr andthen {Not {IsLeaf X}} then
        {Append {Flatten X} {Flatten Xr}}
    end
end
```

Flatten takes a list of elements and sub-lists and returns a list with only the elements, e.g.
\{Flatten [1 [2] [[3]]]\} = [123]

Let us replace lists by difference lists and see what happens.

Flatten with difference lists (2)

```
proc {FlattenD Xs Ds}
case Xs
    of nil then Y in Ds = Y#Y
    [ ] X|Xr then Y0 Y1 Y2 in
        Ds = YO#Y2
        {FlattenD X YO#Y1}
        {FlattenD Xr Y1#Y2}
        [] X andthen {IsLeaf X} then Y in (X|Y)#Y
        end
end
fun {Flatten Xs} Y in {FlattenD Xs Y#nil} Y end
    C. Varela; Adapted w/permission from S. Haridi and P. Van Roy
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Flatten with difference lists (2)} \\
\hline \multicolumn{2}{|l|}{proc \{FlattenD Xs Ds \}} \\
\hline \multicolumn{2}{|l|}{case Xs ( Here is the new} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{[ \(\mathrm{X} \mid \mathrm{Xr}\) then Y0 Y1 Y2 in \({ }^{\text {a }}\) (irst version.} \\
\hline \multicolumn{2}{|l|}{Ds \(=\mathrm{Y} 0 \# \mathrm{Y} 2\)} \\
\hline \multicolumn{2}{|l|}{\{FlattenD X YO\#Y 1 \}} \\
\hline \multicolumn{2}{|l|}{\{FlattenD Xr Y1\#Y2\}} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{[ \(X\) andthen \(\{\mid s L e a f ~ X\}\) then \(Y\) in \((X \mid Y) \# Y\) end}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{end} \\
\hline \multicolumn{2}{|l|}{fun \{Flatten Xs \} Y in \{FlattenD Xs Y\#nil\} Y end} \\
\hline C. Varela; Adapted w/permission from S. Haridi and & Van Roy \({ }^{23}\) \\
\hline
\end{tabular}

\section*{A FIFO queue with difference lists (2)}
\begin{tabular}{|c|c|}
\hline fun \(\{\) NewQueue \(\}\) X in \(\mathrm{q}(0 \times \mathrm{X})\) end & \begin{tabular}{l}
- Inserting ' b ': \\
- In: \(\mathrm{q}(1 \mathrm{a} \mid \mathrm{T}\) T)
\end{tabular} \\
\hline \begin{tabular}{l}
fun \(\{\) Insert Q X \(\}\) \\
case \(Q\) of \(q(N S E)\) then \(E 1\) in \(E=X \mid E 1 q(N+1 S E 1)\) end
\end{tabular} & \begin{tabular}{l}
- Out: \(q(2 a|b| U U)\) \\
- Deleting X:
\end{tabular} \\
\hline end & \begin{tabular}{l}
- In: \(q(2 a|b| U U)\) \\
- Out: \(q(1\) b|UU) and \(X=a\)
\end{tabular} \\
\hline fun \{Delete Q X \} case Q of \(\mathrm{q}(\mathrm{N}\) S E) then S 1 in \(\mathrm{X} \mid \mathrm{S} 1=\mathrm{Sq}(\mathrm{N}-1 \mathrm{~S} 1 \mathrm{E})\) end & \begin{tabular}{l}
- Difference list allows operations at both ends \\
- N is needed to keep track
\end{tabular} \\
\hline fun \{EmptyQueue\} case \(Q\) of \(q(N S E)\) then \(N==0\) end end & of the number of queue elements \\
\hline
\end{tabular}
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Flatten with difference lists (1)
- Flatten of nil is X\#X Here is what it looks like
- Flatten of \(\mathrm{X} \mid \mathrm{Xr}\) is \(\mathrm{Y} 1 \# \mathrm{Y}\) where as text
- flatten of X is \(\mathrm{Y} 1 \# \mathrm{Y} 2\)
- flatten of Xr is Y3\#Y
- equate Y 2 and Y 3
- Flatten of a leaf X is \((\mathrm{X} \mid \mathrm{Y}) \# \mathrm{Y}\)
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy
- Here is our recursive reverse:
fun \(\{\) Reverse Xs\(\}\)
case Xs
of nil then nil
\(\quad[\mathrm{X} \mid \mathrm{Xr}\) then \(\{\) Append \(\{\) Reverse Xr\(\}[\mathrm{X}]\}\)
end
end
- Rewrite this with difference lists:
- Reverse of nil is X\#X
- Reverse of \(\mathrm{X} \mid \mathrm{Xs}\) is \(\mathrm{Y} 1 \# \mathrm{Y}\), where
- reverse of Xs is \(\mathrm{Y} 1 \# \mathrm{Y} 2\), and
- equate Y 2 and \(\mathrm{X} \mid \mathrm{Y}\)
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

\section*{Reverse with difference lists (1)}
- The naive version takes time proportional to the square of the input length
- Using difference lists in the naive version makes it linear time
- We use two arguments Y1 and Y instead of \(\mathrm{Y} 1 \# \mathrm{Y}\)
- With a minor change we can make it iterative as well
fun \{ReverseD Xs\}
proc \{ReverseD Xs Y1 Y\}
case Xs
of nil then \(Y 1=Y\)
[] \(X \mid X r\) then \(Y 2\) in
\{ReverseD Xr Y1 Y2\}
\(\mathrm{Y} 2=\mathrm{X} \mid \mathrm{Y}\)
end
end
R in
\{ReverseD Xs R nil\}
\begin{tabular}{c} 
Rever \\
R \\
end \\
\hline
\end{tabular}

\section*{Reverse with difference lists (2)}
```

fun {ReverseD Xs}
proc {ReverseD Xs Y1 Y}
case Xs
of nil then Y1=Y
[] X|Xr then
{ReverseD Xr Y1 X|Y}
end
end
{ReverseD Xs R nil}
{Rev
end

```

\section*{Difference lists: Summary}
- Difference lists are a way to represent lists in the declarative model such that one append operation can be done in constant time

A function that builds a big list by concatenating together lots of little lists can usually be written efficiently with difference lists
- The function can be written naively, using difference lists and append, and will be efficient when the append is expanded out
- Difference lists are declarative, yet have some of the power of destructive assignment
- Because of the single-assignment property of dataflow variables
- Difference lists originated from Prolog and are used to implement, e.g., definite clause grammar rules for natural language parsing.

\section*{Exercises}
15. Draw the search trees for Prolog queries:
- append ([1, 2], [3],L).
- append (X,Y,[1,2,3]).
- append_dl([1,2|X],X,[3|Y],Y,S,E).
16. Rewrite the multiple accumulators example in Prolog.
17. VRH Exercise 3.10 .11 (page 232)
18. VRH Exercise 3.10 .14 (page 232)
19. VRH Exercise 3.10 .15 (page 232)```

