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Accumulators
• Accumulator programming is a way to handle state in

declarative programs.  It is a programming technique that
uses arguments to carry state, transform the state, and pass
it to the next procedure.

• Assume that the state S consists of a number of
components to be transformed individually:

S = (X,Y,Z,...)
• For each predicate P, each state component is made into a

pair, the first component is the input state and the second
component is the output state after P has terminated

• S is represented as
(Xin, Xout, Yin, Yout, Zin, Zout,...)
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A Trivial Example in Prolog
increment(N0,N) :-

N is N0 + 1.

square(N0,N) :-

N is N0 * N0.

inc_square(N0,N) :-

increment(N0,N1),

square(N1,N).

increment takes N0 as the input
and produces N as the output by
adding 1 to N0.

square takes N0 as the input and
produces N as the output by
multiplying N0 to itself.

inc_square takes N0 as the input
and produces N as the output by
using an intermediate variable N1 to
carry N0+1 (the output of
increment) and passing it as
input to square.  The pairs N0-N1
and N1-N are called accumulators.
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A Trivial Example in Oz
proc {Increment N0 N}

N = N0 + 1

end

proc {Square N0 N}

N = N0 * N0
end

proc {IncSquare N0 N}

N1 in
{Increment N0 N1}

{Square N1 N}

end

Increment takes N0 as the input
and produces N as the output by
adding 1 to N0.

Square takes N0 as the input and
produces N as the output by
multiplying N0 to itself.

IncSquare takes N0 as the input
and produces N as the output by
using an intermediate variable N1 to
carry N0+1 (the output of
Increment) and passing it as
input to Square.  The pairs N0-N1
and N1-N are called accumulators.
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Accumulators
• Assume that the state S consists of a number of components to be

transformed individually:
S = (X,Y,Z)

• Assume P1 to Pn are procedures in Oz

proc {P X0 X Y0 Y Z0 Z}
:

{P1 X0 X1 Y0 Y1 Z0 Z1}
{P2 X1 X2 Y1 Y2 Z1 Z2}

:
{Pn Xn-1 X Yn-1 Y Zn-1 Z}

end
• The procedural syntax is easier to use if there is more than one

accumulator

accumulator

The same
concept

applies to
predicates in

Prolog
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MergeSort Example
• Consider a variant of MergeSort with accumulator
• proc {MergeSort1 N S0 S Xs}

– N is an integer,
– S0 is an input list to be sorted
– S is the remainder of S0 after the first N elements are sorted
– Xs is the sorted first N elements of S0

• The pair (S0, S) is an accumulator
• The definition is in a procedural syntax in Oz because it

has two outputs S and Xs
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Example (2)
fun {MergeSort Xs}

   {MergeSort1 {Length Xs} Xs _ Ys}

   Ys

end

proc {MergeSort1 N S0 S Xs}
   if N==0 then S = S0 Xs = nil

   elseif N ==1 then X in X|S = S0 Xs=[X]

   else %% N > 1

local S1 Xs1 Xs2 NL NR in

        NL = N div 2
        NR = N - NL

        {MergeSort1 NL S0 S1 Xs1}

        {MergeSort1 NR S1 S Xs2}

        Xs = {Merge Xs1 Xs2}
     end

   end

end
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MergeSort Example in Prolog
mergesort(Xs,Ys) :-

   length(Xs,N),

   mergesort1(N,Xs,_,Ys).

mergesort1(0,S,S,[]) :- !.
mergesort1(1,[X|S],S,[X]) :- !.

mergesort1(N,S0,S,Xs) :-

 NL is N // 2,

        NR is N - NL,

        mergesort1(NL,S0,S1,Xs1),
        mergesort1(NR,S1,S,Xs2),

        merge(Xs1,Xs2,Xs).
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Multiple accumulators
• Consider a stack machine for evaluating

arithmetic expressions
• Example: (1+4)-3
• The machine executes the following

instructions
push(1)
push(4)
plus
push(3)
minus

 4 

 1 

 5  3 

 5 

 2 
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Multiple accumulators (2)
• Example: (1+4)-3
• The arithmetic expressions are represented as trees:

minus(plus(1 4) 3)
• Write a procedure that takes arithmetic expressions

represented as trees and output a list of stack machine
instructions and counts the number of instructions

proc {ExprCode Expr Cin Cout Nin Nout}

• Cin: initial list of instructions
• Cout: final list of instructions
• Nin: initial count
• Nout: final count
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Multiple accumulators (3)
proc {ExprCode Expr C0 C N0 N}
   case Expr
   of plus(Expr1 Expr2) then C1 N1 in
      C1 = plus|C0
      N1 = N0 + 1
      {SeqCode [Expr2 Expr1] C1 C N1 N}
   [] minus(Expr1 Expr2) then C1 N1 in
      C1 = minus|C0
      N1 = N0 + 1
      {SeqCode [Expr2 Expr1] C1 C N1 N}
   [] I andthen {IsInt I} then
      C = push(I)|C0
      N = N0 + 1
   end
end
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Multiple accumulators (4)
proc {ExprCode Expr C0 C N0 N}
   case Expr
   of plus(Expr1 Expr2) then C1 N1 in
      C1 = plus|C0
      N1 = N0 + 1
      {SeqCode [Expr2 Expr1] C1 C N1 N}
   [] minus(Expr1 Expr2) then C1 N1 in
      C1 = minus|C0
      N1 = N0 + 1
      {SeqCode [Expr2 Expr1] C1 C N1 N}
   [] I andthen {IsInt I} then
      C = push(I)|C0
      N = N0 + 1
   end
end

proc {SeqCode Es C0 C N0 N}
   case Es
   of nil then C = C0 N = N0
   [] E|Er then N1 C1 in
      {ExprCode E C0 C1 N0 N1}
      {SeqCode Er C1 C N1 N}
   end
end
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Shorter version (4)
proc {ExprCode Expr C0 C N0 N}
   case Expr

   of plus(Expr1 Expr2) then

      {SeqCode [Expr2 Expr1] plus|C0 C N0 + 1 N}

   [] minus(Expr1 Expr2) then

 {SeqCode [Expr2 Expr1] minus|C0 C N0 + 1 N}
   [] I andthen {IsInt I} then

      C = push(I)|C0

      N = N0 + 1

   end
end

proc {SeqCode Es C0 C N0 N}
   case Es
   of nil then C = C0 N = N0
   [] E|Er then N1 C1 in
      {ExprCode E C0 C1 N0 N1}
      {SeqCode Er C1 C N1 N}
   end
end
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Functional style (4)
fun {ExprCode Expr t(C0 N0) }
   case Expr

   of plus(Expr1 Expr2) then

      {SeqCode [Expr2 Expr1] t(plus|C0 N0 + 1)}

   [] minus(Expr1 Expr2) then

 {SeqCode [Expr2 Expr1] t(minus|C0 N0 + 1)}
   [] I andthen {IsInt I} then

      t(push(I)|C0 N0 + 1)

   end

end

fun {SeqCode Es T}
   case Es
   of nil then T
   [] E|Er then

T1 = {ExprCode E T} in
      {SeqCode Er T1}
   end
end
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Difference lists in Oz
• A difference list is a pair of lists, each might have an

unbound tail, with the invariant that one can get the second
list by removing zero or more elements from the first list

• X # X % Represent the empty list
• nil # nil % idem
• [a] # [a] % idem
• (a|b|c|X) # X % Represents [a b c]
• [a b c d] # [d] % idem
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Difference lists in Prolog
• A difference list is a pair of lists, each might have an

unbound tail, with the invariant that one can get the second
list by removing zero or more elements from the first list

• X , X % Represent the empty list
• [] , [] % idem
• [a] , [a] % idem
• [a,b,c|X] , X % Represents [a,b,c]
• [a,b,c,d] , [d] % idem
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Difference lists in Oz (2)
• When the second list is unbound, an append operation with

another difference list takes constant time
• fun {AppendD D1 D2}

S1 # E1 = D1
S2 # E2 = D2

in E1 = S2
S1 # E2

end

• local X Y in {Browse {AppendD (1|2|3|X)#X (4|5|Y)#Y}} end
• Displays (1|2|3|4|5|Y)#Y
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Difference lists in Prolog (2)
• When the second list is unbound, an append operation with another difference

list takes constant time

append_dl(S1,E1, S2,E2, S1,E2)  :-  E1 = S2.

• ?- append_dl([1,2,3|X],X, [4,5|Y],Y, S,E).

Displays
X = [4, 5|_G193]
Y = _G193
S = [1, 2, 3, 4, 5|_G193]
E = _G193 ;
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A FIFO queue
with difference lists (1)

• A FIFO queue is a sequence of elements with an insert and a delete operation.
– Insert adds an element to one end and delete removes it from the other end

• Queues can be implemented with lists.  If L represents the queue content, then
inserting X gives X|L and deleting X gives {ButLast L X} (all elements but
the last).

– Delete is inefficient: it takes time proportional to the number of queue elements
• With difference lists we can implement a queue with constant-time insert and

delete operations
– The queue content is represented as q(N S E), where N is the number of elements

and S#E is a difference list representing the elements
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A FIFO queue
with difference lists (2)

• Inserting ‘b’:
– In: q(1 a|T T)

– Out: q(2 a|b|U U)

• Deleting X:
– In: q(2 a|b|U U)

– Out: q(1 b|U U)
and X=a

• Difference list allows
operations at both ends

• N is needed to keep track
of the number of queue
elements

fun {NewQueue} X in q(0 X X) end

fun {Insert Q X}
case Q of q(N S E) then E1 in E=X|E1 q(N+1 S E1) end

end

fun {Delete Q X}
case Q of q(N S E) then S1 in X|S1=S q(N-1 S1 E) end

end

fun {EmptyQueue} case Q of q(N S E) then N==0 end end
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Flatten (revisited)

fun {Flatten Xs}
case Xs
   of nil then nil
   [] X|Xr andthen {IsLeaf X} then
     X|{Flatten Xr}
   [] X|Xr  andthen {Not {IsLeaf X}} then
      {Append {Flatten X} {Flatten Xr}}
   end
end

Flatten takes a list of
elements and sub-lists
and returns a list with
only the elements, e.g.:

{Flatten [1 [2] [[3]]]} =
[1 2 3]

Let us replace lists by
difference lists and see
what happens.
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Flatten with difference lists (1)

• Flatten of nil is X#X
• Flatten of X|Xr is Y1#Y where

– flatten of X is Y1#Y2
– flatten of Xr is Y3#Y
– equate Y2 and Y3

• Flatten of a leaf X is (X|Y)#Y

Here is what it looks like
as text
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Flatten with difference lists (2)
proc {FlattenD Xs Ds}

case Xs

   of nil then Y in Ds = Y#Y

   [] X|Xr  then Y0 Y1 Y2 in
  Ds = Y0#Y2

      {FlattenD X Y0#Y1}
 {FlattenD Xr Y1#Y2}

   [] X andthen {IsLeaf X} then Y in (X|Y)#Y

   end

end

fun {Flatten Xs}  Y in {FlattenD Xs Y#nil}  Y end

Here is the new
program.  It is much
more efficient than the
first version.
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Reverse (revisited)

• Here is our recursive reverse:

• Rewrite this with difference lists:
– Reverse of nil is X#X
– Reverse of X|Xs is Y1#Y, where

• reverse of Xs is Y1#Y2, and
• equate Y2 and X|Y

fun {Reverse Xs}
case Xs

of nil then nil

[] X|Xr then {Append {Reverse Xr} [X]}

end

end
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Reverse with difference lists (1)

• The naive version takes
time proportional to the
square of the input length

• Using difference lists in
the naive version makes it
linear time

• We use two arguments Y1
and Y instead of Y1#Y

• With a minor change we
can make it iterative as
well

fun {ReverseD Xs}
proc {ReverseD Xs Y1 Y}

case Xs
of nil then Y1=Y
[]  X|Xr then Y2 in      
      {ReverseD Xr Y1 Y2}
      Y2 = X|Y
end

end
R in

{ReverseD Xs R nil}
R

end
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Reverse with difference lists (2)

fun {ReverseD Xs}
proc {ReverseD Xs Y1 Y}

case Xs
of nil then Y1=Y
[]  X|Xr then
     {ReverseD Xr Y1 X|Y}
end

end
R in
{ReverseD Xs R nil}
R

end
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Difference lists:  Summary

• Difference lists are a way to represent lists in the declarative model
such that one append operation can be done in constant time

– A function that builds a big list by concatenating together lots of little lists
can usually be written efficiently with difference lists

– The function can be written naively, using difference lists and append, and
will be efficient when the append is expanded out

• Difference lists are declarative, yet have some of the power of
destructive assignment

– Because of the single-assignment property of dataflow variables
• Difference lists originated from Prolog and are used to implement,

e.g., definite clause grammar rules for natural language parsing.
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Exercises

15. Draw the search trees for Prolog queries:
• append([1,2],[3],L).
• append(X,Y,[1,2,3]).
• append_dl([1,2|X],X,[3|Y],Y,S,E).

16. Rewrite the multiple accumulators example in Prolog.
17. VRH Exercise 3.10.11 (page 232)
18. VRH Exercise 3.10.14 (page 232)
19. VRH Exercise 3.10.15 (page 232)


