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Programming
• A computation model: describes a language and how the

sentences (expressions, statements) of the language are
executed by an abstract machine

• A set of programming techniques: to express solutions to
the problems you want to solve

• A set of reasoning techniques: to reason about programs to
increase the confidence that they behave correctly and to
calculate their efficiency
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Declarative Programming Model
• Guarantees that the computations are evaluating functions

on (partial) data structures
• The core of functional programming (LISP, Scheme, ML,

Haskell)
• The core of logic programming (Prolog, Mercury)
• Stateless programming vs. stateful (imperative)

programming
• We will see how declarative programming underlies

concurrent and object-oriented programming (Erlang, C++,
Java, SALSA)
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Defining a programming language

• Syntax (grammar)
• Semantics (meaning)
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Language syntax
• Defines what are the legal programs, i.e. programs that can

be executed by a machine (interpreter)
• Syntax is defined by grammar rules
• A grammar defines how to make ‘sentences’ out of

‘words’
• For programming languages: sentences are called

statements (commands, expressions)
• For programming languages: words are called tokens
• Grammar rules are used to describe both tokens and

statements
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Language syntax (2)
• A statement is a sequence of tokens
• A token is a sequence of characters
• A program that recognizes a

sequence of characters and produces
a sequence of tokens is called a
lexical analyzer

• A program that recognizes a
sequence of tokens and produces a
statement representation is called a
parser

• Normally statements are represented
as (parse) trees

Lexical analyzer

Parser

characters

tokens

sentences
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Extended Backus-Naur Form
• EBNF (Extended Backus-Naur Form) is a common

notation to define grammars for programming languages
• Terminal symbols and non-terminal symbols
• Terminal symbol is a token
• Nonterminal symbol is a sequence of tokens, and is

represented by a grammar rule
〈nonterminal〉 ::= 〈rule body〉
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Grammar rules
• 〈digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

• 〈digit〉 is defined to represent one of the ten tokens 0, 1, …, 9
• The symbol ‘|’ is read as ‘or’
• Another reading is that 〈digit〉 describes the set of tokens

{0,1,…, 9}
• Grammar rules may refer to other nonterminals
• 〈integer〉 ::= 〈digit〉 { 〈digit〉 }

• 〈integer〉 is defined as the sequence of a 〈digit〉 followed by
zero or more 〈digit〉’s
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How to read grammar rules
• 〈x〉 : is a nonterminal x
• 〈x〉 ::= Body : 〈x〉 is defined by Body
• 〈x〉 | 〈y〉 : either 〈x〉 or 〈y〉  (choice)
• 〈x〉 〈y〉 : the sequence 〈x〉  followed by 〈y〉
• { 〈x〉 } : a sequence of zero or more occurrences of 〈x〉
• { 〈x〉 }+ : a sequence of one or more occurrences of 〈x〉
• [ 〈x〉 ] : zero or one occurrences of 〈x〉
• Read the grammar rule from left to right to give the following

sequence:
– Each terminal symbol is added to the sequence
– Each nonterminal is replaced by its definition
– For each 〈x〉 | 〈y〉 pick any of the alternatives
– For each  〈x〉 〈y〉 add the sequence 〈x〉 followed by the sequence 〈y〉

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 10

Context-free and context-sensitive
grammars

• Grammar rules can be used either
– to verify that a statement is legal, or
– to generate all possible statements

• The set of all possible statements generated from a grammar and one
nonterminal symbol is called a (formal) language

• EBNF notation defines a class of grammars called context-free grammars
• Expansion of a nonterminal is always the same regardless of where it is

used
• For practical languages, a context-free grammar is not enough, usually a

condition on the context is sometimes added
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Context-free and context-sensitive
grammars

• It is easy to read and understand
• Defines a superset of the language

• Expresses restrictions imposed by
the language (e.g. variable must
be declared before use)

• Makes the grammar rules context
sensitive

Context-free grammar
(e.g. with EBNF) 

+

Set of extra conditions 
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Examples
• 〈statement〉 ::= skip | 〈expression〉 ‘=‘ 〈expression〉 | …

• 〈expression〉 ::= 〈variable〉 | 〈integer〉 | …

• 〈statement〉 ::= if 〈expression〉 then 〈statement〉
                         { elseif 〈expression〉 then 〈statement〉 }
                         [ else 〈statement〉 ] end | …
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Example: (Parse Trees)
• if 〈expression〉 then 〈statement〉1 else 〈statement〉2 end

conditional

expression statement1 statement2

if then else
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Language Semantics
• Semantics defines what a program does when it executes
• Semantics should be simple and yet allows reasoning about

programs (correctness, execution time, and memory use)
• How can this be achieved for a practical language that is

used to build complex systems (millions of lines of code)?
• The kernel language approach
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Kernel Language Approach
• Define a very simple language (kernel language)
• Define the computation model of the kernel language
• By defining how the constructs (statements) of the

language manipulate (create and transform) the data
structures (the entities) of the language

• Define a mapping scheme (translation) of the full
programming language into the kernel language

• Two kinds of translations: linguistic abstractions and
syntactic sugar
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Kernel Language Approach

Practical language

kernel language

Translation

fun {Sqr X} X*X end
B = {Sqr {Sqr A}}

proc {Sqr X Y}
     { * X X Y}
end
local T in
     {Sqr A T}
     {Sqr T B}
end

• Provides useful abstractions
   for the programmer
• Can be extended with linguistic
   abstractions

• Is easy to understand and reason
   with
• Has a precise (formal) semantics
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Linguistic abstractions vs. syntactic
sugar

• Linguistic abstractions, provide higher level concepts that
the programmer can use to model and reason about
programs (systems)

• Examples: functions (fun), iterations (for), classes and
objects (class), mailboxes (receive)

• The functions (calls) are translated to procedures (calls)
• The translation answers questions about the function call:

 {F1 {F2 X} {F3 X}}
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Linguistic abstractions vs. syntactic
sugar

• Linguistic abstractions, provide higher
level concepts that the programmer can
use to model and reason about programs
(systems)

• Syntactic sugar are short cuts and
conveniences to improve readability

if N==1 then [1]
else
     local L in
         …
     end
end

if N==1 then [1]
else L in
         …
end
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Approaches to semantics

Programming Language

Kernel Language

Operational model

Formal calculus Abstract machine

Aid the programmer
in reasoning and
understanding

Mathematical study of
programming (languages)
λ-calculus, predicate calculus,
π-calculus

Aid to the implementer
Efficient execution on
a real machine
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Exercises
39. Write a valid EBNF grammar for lists of non-negative

integers in Oz.
40. Write a valid EBNF grammar for the λ-calculus.

• Which are terminal and which are non-terminal symbols?
• Draw the parse tree for the expression:

((λx.x λy.y) λz.z)
41. The grammar

<exp> ::= <int> | <exp> <op> <exp>
<op> ::= + | *

is ambiguous (e.g., it can produce two parse trees for the
expression 2*3+4).  Rewrite the grammar so that it
accepts the same language unambiguously.


