
1

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 1

Introduction to Programming
Concepts (VRH 1.1-1.8)

Carlos Varela
RPI

September 22, 2009

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 2

Introduction
• An introduction to programming concepts
• Declarative variables
• Functions
• Structured data (example: lists)
• Functions over lists
• Correctness and complexity
• Lazy functions
• Concurrency and dataflow
• State, objects, and classes
• Nondeterminism and atomicity

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 3

Variables
• Variables are short-cuts for values, they cannot be assigned

more than once
declare

 V = 9999*9999

{Browse V*V}

• Variable identifiers: is what you type
• Store variable: is part of the memory system
• The declare statement creates a store variable and assigns

its memory address to the identifier ’V’ in the environment

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 4

Functions
• Compute the factorial function:
• Start with the mathematical definition

declare

fun {Fact N}

 if N==0 then 1 else N*{Fact N-1} end

end

• Fact is declared in the environment
• Try large factorial {Browse {Fact 100}}

nnn !"!!!=)1(21! L

0 if)!1(!

1!0

>!"=

=

nnnn

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 5

Composing functions
• Combinations of r items taken from n.
• The number of subsets of size r taken from a set of size n

)!(!

!

rnr

n

r

n

!
="

#

$
%
&

'

declare

fun {Comb N R}

 {Fact N} div ({Fact R}*{Fact N-R})

end

• Example of functional abstraction

Comb

Fact Fact Fact

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 6

Structured data (lists)
• Calculate Pascal triangle
• Write a function that calculates the nth row as

one structured value
• A list is a sequence of elements:

[1 4 6 4 1]

• The empty list is written nil

• Lists are created by means of ”|” (cons)
declare

H=1

T = [2 3 4 5]

{Browse H|T} % This will show [1 2 3 4 5]

1
11

1 2 1

1 3 3 1

1 4 6 4 1

2

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 7

Lists (2)

• Taking lists apart (selecting components)
• A cons has two components: a head, and a tail

declare L = [5 6 7 8]

L.1 gives 5
L.2 give [6 7 8]

‘|’

‘|’

‘|’

6

7

8 nil

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 8

Pattern matching

• Another way to take a list apart is by use of pattern
matching with a case instruction

case L of H|T then {Browse H} {Browse T} end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 9

Functions over lists

• Compute the function {Pascal N}
• Takes an integer N, and returns the

Nth row of a Pascal triangle as a list
1. For row 1, the result is [1]
2. For row N, shift to left row N-1 and

shift to the right row N-1
3. Align and add the shifted rows

element-wise to get row N

1
11

1 2 1

1 3 3 1

1 4 6 4 1

(0) (0)

[0 1 3 3 1]

[1 3 3 1 0]

Shift right

Shift left

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 10

Functions over lists (2)

declare

fun {Pascal N}

 if N==1 then [1]

 else

 {AddList

 {ShiftLeft {Pascal N-1}}

 {ShiftRight {Pascal N-1}}}

 end

end
AddList

ShiftLeft ShiftRight

Pascal N-1 Pascal N-1

Pascal N

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 11

Functions over lists (3)

fun {ShiftLeft L}

 case L of H|T then

 H|{ShiftLeft T}

 else [0]

 end

end

fun {ShiftRight L} 0|L end

fun {AddList L1 L2}

 case L1 of H1|T1 then

 case L2 of H2|T2 then

 H1+H2|{AddList T1 T2}

 end

 else nil end

end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 12

Top-down program development
• Understand how to solve the problem by hand
• Try to solve the task by decomposing it to simpler tasks
• Devise the main function (main task) in terms of suitable

auxiliary functions (subtasks) that simplify the solution
(ShiftLeft, ShiftRight and AddList)

• Complete the solution by writing the auxiliary functions

3

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 13

Is your program correct?
• “A program is correct when it does what we would like it

to do”
• In general we need to reason about the program:
• Semantics for the language: a precise model of the

operations of the programming language
• Program specification: a definition of the output in terms

of the input (usually a mathematical function or relation)
• Use mathematical techniques to reason about the program,

using programming language semantics

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 14

Mathematical induction
• Select one or more inputs to the function
• Show the program is correct for the simple cases (base

cases)
• Show that if the program is correct for a given case, it is

then correct for the next case.
• For natural numbers, the base case is either 0 or 1, and for

any number n the next case is n+1
• For lists, the base case is nil, or a list with one or a few

elements, and for any list T the next case is H|T

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 15

Correctness of factorial

fun {Fact N}

 if N==0 then 1 else N*{Fact N-1} end

end

• Base Case N=0: {Fact 0} returns 1
• Inductive Case N>0: {Fact N} returns N*{Fact N-1} assume

{Fact N-1} is correct, from the spec we see that {Fact N} is
N*{Fact N-1}

nn

nFact

!"!!!

"

44 344 21
L

)1(

)1(21

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 16

Complexity
• Pascal runs very slow,

try {Pascal 24}
• {Pascal 20} calls: {Pascal 19} twice,

{Pascal 18} four times, {Pascal 17}
eight times, ..., {Pascal 1} 219 times

• Execution time of a program up to a
constant factor is called the
program’s time complexity.

• Time complexity of {Pascal N} is
proportional to 2N (exponential)

• Programs with exponential time
complexity are impractical

declare

fun {Pascal N}

 if N==1 then [1]

 else

 {AddList

 {ShiftLeft {Pascal N-1}}

 {ShiftRight {Pascal N-1}}}

 end

end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 17

fun {FastPascal N}

 if N==1 then [1]
 else

 local L in

 L={FastPascal N-1}

 {AddList {ShiftLeft L} {ShiftRight L}}
end

 end

end

Faster Pascal
• Introduce a local variable L
• Compute {FastPascal N-1} only once
• Try with 30 rows.
• FastPascal is called N times, each

time a list on the average of size N/2
is processed

• The time complexity is proportional
to N2 (polynomial)

• Low order polynomial programs are
practical.

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 18

Lazy evaluation
• The functions written so far are evaluated eagerly (as soon

as they are called)
• Another way is lazy evaluation where a computation is

done only when the result is needed

declare
fun lazy {Ints N}
 N|{Ints N+1}
end

• Calculates the infinite list:
0 | 1 | 2 | 3 | ...

4

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 19

Lazy evaluation (2)
• Write a function that computes as

many rows of Pascal’s triangle as
needed

• We do not know how many
beforehand

• A function is lazy if it is evaluated
only when its result is needed

• The function PascalList is evaluated
when needed

fun lazy {PascalList Row}

 Row | {PascalList

 {AddList

 {ShiftLeft Row}

 {ShiftRight Row}}}

end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 20

Lazy evaluation (3)
• Lazy evaluation will avoid

redoing work if you decide first
you need the 10th row and later
the 11th row

• The function continues where it
left off

declare

L = {PascalList [1]}

{Browse L}

{Browse L.1}

{Browse L.2.1}

L<Future>

[1]

[1 1]

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 21

Exercises
32. Define Add in Oz using the Zero and Succ functions

representing numbers in the lambda-calculus:
Zero = fun {$ X} X end
Succ = fun {$ N} fun {$ X} N end

33. Prove that Add is correct using induction.
34. Prove the correctness of AddList and ShiftLeft using

induction
35. VRH Exercise 1.18.5.

