
1

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 1

Introduction to Programming
Concepts (VRH 1.9-1.17)

Carlos Varela
RPI

September 25, 2009

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 2

Introduction
• An introduction to programming concepts
• Declarative variables
• Functions
• Structured data (example: lists)
• Functions over lists
• Correctness and complexity
• Lazy functions
• Higher-order programming
• Concurrency and dataflow
• State, objects, and classes
• Nondeterminism and atomicity

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 3

Higher-order programming
• Assume we want to write another Pascal function, which

instead of adding numbers, performs exclusive-or on them
• It calculates for each number whether it is odd or even

(parity)
• Either write a new function each time we need a new

operation, or write one generic function that takes an
operation (another function) as argument

• The ability to pass functions as arguments, or return a
function as a result is called higher-order programming

• Higher-order programming is an aid to build generic
abstractions

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 4

Variations of Pascal
• Compute the parity Pascal triangle

1
11

1 2 1

1 3 3 1

1 4 6 4 1

1
11

1 0 1

1 1 1 1

1 0 0 0 1

fun {Xor X Y} if X==Y then 0 else 1 end end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 5

Higher-order programming
fun {GenericPascal Op N}

 if N==1 then [1]

 else L in L = {GenericPascal Op N-1}

 {OpList Op {ShiftLeft L} {ShiftRight L}}

 end
end

fun {OpList Op L1 L2}

case L1 of H1|T1 then

case L2 of H2|T2 then

 {Op H1 H2}|{OpList Op T1 T2}
end

 else nil end

end

fun {Add N1 N2} N1+N2 end

fun {Xor N1 N2}

if N1==N2 then 0 else 1 end

end

fun {Pascal N} {GenericPascal Add N} end

fun {ParityPascal N}

{GenericPascal Xor N}

end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 6

Concurrency
• How to do several things at once
• Concurrency: running several activities

each running at its own pace
• A thread is an executing sequential

program
• A program can have multiple threads by

using the thread instruction
• {Browse 99*99} can immediately respond

while Pascal is computing

thread

 P in

 P = {Pascal 21}

 {Browse P}

end

{Browse 99*99}

2

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 7

Dataflow

• What happens when multiple threads try to
communicate?

• A simple way is to make communicating
threads synchronize on the availability of data
(data-driven execution)

• If an operation tries to use a variable that is not
yet bound it will wait

• The variable is called a dataflow variable

+

* *

X Y Z U

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 8

Dataflow (II)

• Two important properties of dataflow
– Calculations work correctly independent

of how they are partitioned between
threads (concurrent activities)

– Calculations are patient, they do not
signal error; they wait for data
availability

• The dataflow property of variables
makes sense when programs are
composed of multiple threads

declare X

thread

 {Delay 5000} X=99

End

{Browse ‘Start’} {Browse X*X}

declare X

thread

 {Browse ‘Start’} {Browse X*X}

end

{Delay 5000} X=99

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 9

State
• How to make a function learn from its past?
• We would like to add memory to a function to

remember past results
• Adding memory as well as concurrency is an

essential aspect of modeling the real world
• Consider {FastPascal N}: we would like it to

remember the previous rows it calculated in
order to avoid recalculating them

• We need a concept (memory cell) to store,
change and retrieve a value

• The simplest concept is a (memory) cell which
is a container of a value

• One can create a cell, assign a value to a cell,
and access the current value of the cell

• Cells are not variables

declare

C = {NewCell 0}

{Assign C {Access C}+1}

{Browse {Access C}}

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 10

Example
• Add memory to Pascal to

remember how many times
it is called

• The memory (state) is
global here

• Memory that is local to a
function is called
encapsulated state

declare

C = {NewCell 0}

fun {FastPascal N}

{Assign C {Access C}+1}

{GenericPascal Add N}

end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 11

Objects

• Functions with internal
memory are called objects

• The cell is invisible outside
of the definition

declare

local C in

 C = {NewCell 0}

 fun {Bump}

 {Assign C {Access C}+1}

 {Access C}

 end

end

declare

fun {FastPascal N}

{Browse {Bump}}

{GenericPascal Add N}

end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 12

Classes
• A class is a ’factory’ of

objects where each object
has its own internal state

• Let us create many
independent counter
objects with the same
behavior

fun {NewCounter}

 local C Bump in

 C = {NewCell 0}

 fun {Bump}

 {Assign C {Access C}+1}

 {Access C}

 end

 Bump

 end

end

3

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 13

Classes (2)

• Here is a class with two
operations: Bump and
Read

fun {NewCounter}

 local C Bump Read in

 C = {NewCell 0}

 fun {Bump}

 {Assign C {Access C}+1}

 {Access C}

 end

 fun {Read}

 {Access C}

 end

 [Bump Read]

 end

end
C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 14

Object-oriented programming
• In object-oriented programming the idea of objects and

classes is pushed farther
• Classes keep the basic properties of:

– State encapsulation
– Object factories

• Classes are extended with more sophisticated properties:
– They have multiple operations (called methods)
– They can be defined by taking another class and extending it

slightly (inheritance)

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 15

Nondeterminism
• What happens if a program has both concurrency and state

together?
• This is very tricky
• The same program can give different results from one

execution to the next
• This variability is called nondeterminism
• Internal nondeterminism is not a problem if it is not

observable from outside

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 16

Nondeterminism (2)

declare

C = {NewCell 0}

thread {Assign C 1} end

thread {Assign C 2} end

time

C = {NewCell 0}
cell C contains 0

{Assign C 1}
cell C contains 1

{Assign C 2}
cell C contains 2 (final value)

t0

t1

t2

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 17

Nondeterminism (3)

declare

C = {NewCell 0}

thread {Assign C 1} end

thread {Assign C 2} end

time

C = {NewCell 0}
cell C contains 0

{Assign C 2}
cell C contains 2

{Assign C 1}
cell C contains 1 (final value)

t0

t1

t2

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 18

Nondeterminism (4)
declare
C = {NewCell 0}

thread I in
I = {Access C}
{Assign C I+1}

end
thread J in
 J = {Access C}

{Assign C J+1}
end

• What are the possible results?
• Both threads increment the cell

C by 1
• Expected final result of C is 2
• Is that all?

4

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 19

Nondeterminism (5)
• Another possible final result is the cell

C containing the value 1

declare
C = {NewCell 0}
thread I in

I = {Access C}
{Assign C I+1}

end
thread J in
 J = {Access C}

{Assign C J+1}
end

time

C = {NewCell 0}

I = {Access C}
I equal 0

t0

t1

t2 J = {Access C}
J equal 0
{Assign C J+1}
C contains 1

{Assign C I+1}
C contains 1

t3

t4

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 20

Lessons learned

• Combining concurrency and state is tricky
• Complex programs have many possible interleavings
• Programming is a question of mastering the interleavings
• Famous bugs in the history of computer technology are due to

designers overlooking an interleaving (e.g., the Therac-25 radiation
therapy machine giving doses 1000’s of times too high, resulting in
death or injury)

• If possible try to avoid concurrency and state together
• Encapsulate state and communicate between threads using dataflow
• Try to master interleavings by using atomic operations

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 21

Atomicity
• How can we master the interleavings?
• One idea is to reduce the number of interleavings by

programming with coarse-grained atomic operations
• An operation is atomic if it is performed as a whole or

nothing
• No intermediate (partial) results can be observed by any

other concurrent activity
• In simple cases we can use a lock to ensure atomicity of a

sequence of operations
• For this we need a new entity (a lock)

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 22

Atomicity (2)
declare

L = {NewLock}

lock L then

 sequence of ops 1

end

Thread 1
lock L then

 sequence of ops 2

end

Thread 2

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 23

The program
declare
C = {NewCell 0}
L = {NewLock}

thread
lock L then I in
 I = {Access C}
 {Assign C I+1}
end

end
thread

lock L then J in
 J = {Access C}

 {Assign C J+1}
end

end

The final result of C is
always 2

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 24

Memoizing FastPascal

• {FasterPascal N} New Version
1. Make a store S available to FasterPascal
2. Let K be the number of the rows stored in

S (i.e. max row is the Kth row)
3. if N is less or equal to K retrieve the Nth

row from S
4. Otherwise, compute the rows numbered

K+1 to N, and store them in S
5. Return the Nth row from S

• Viewed from outside (as a black box),
this version behaves like the earlier
one but faster

declare

S = {NewStore}

{Put S 2 [1 1]}

{Browse {Get S 2}}

{Browse {Size S}}

5

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 25

Exercises
36. VRH Exercise 1.6 (page 24)

c) Change GenericPascal so that it also receives a number to use as an
identity for the operation Op: {GenericPascal Op I N}. For
example, you could then use it as:
 {GenericPascal Add 0 N}, or
{GenericPascal fun {$ X Y} X*Y end 1 N}

37. Prove that the alternative version of Pascal triangle (not
using ShiftLeft) is correct. Make AddList and OpList
commutative.

38. Write the memoizing Pascal function using the store
abstraction (available at store.oz).

