
1

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 1

Declarative Computation Model
 Kernel language semantics

Basic concepts, the abstract machine (VRH 2.4.1-2.4.2)

Carlos Varela
RPI

October 9, 2009

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Sequential declarative computation
model

• The single assignment store
– declarative (dataflow) variables
– partial values (variables and values are also called entities)

• The kernel language syntax
• The kernel language semantics

– The environment: maps textual variable names (variable
identifiers) into entities in the store

– Interpretation (execution) of the kernel language elements
(statements) by the use of an abstract machine

– Abstract machine consists of an execution stack of statements
transforming the store

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 3

Kernel language syntax

〈s〉 ::= skip empty statement
 | 〈x〉 = 〈y〉 variable-variable binding

| 〈x〉 = 〈v〉 variable-value binding
| 〈s1〉 〈s2〉 sequential composition
| local 〈x〉 in 〈s1〉 end declaration
| if 〈x〉 then 〈s1〉 else 〈s2〉 end conditional
| { 〈x〉 〈y1〉 … 〈yn〉 } procedural application
| case 〈x〉 of 〈pattern〉 then 〈s1〉 else 〈s2〉 end pattern matching

〈v〉 ::= proc { $ 〈y1〉 … 〈yn〉 } 〈s1〉 end | ... value expression

〈pattern〉 ::= ...

The following defines the syntax of a statement, 〈s〉 denotes a statement

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 4

Examples
• local X in X = 1 end

• local X Y T Z in
X = 5
Y = 10
T = (X>=Y)
if T then Z = X else Z = Y end
{Browse Z}

end

• local S T in
S = proc {$ X Y} Y = X*X end
{S 5 T}
{Browse T}

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 5

Procedure abstraction

• Any statement can be abstracted to a procedure by selecting a number
of the ’free’ variable identifiers and enclosing the statement into a
procedure with the identifiers as parameters

• if X >= Y then Z = X else Z = Y end
• Abstracting over all variables

proc {Max X Y Z}
if X >= Y then Z = X else Z = Y end

end
• Abstracting over X and Z

proc {LowerBound X Z}
if X >= Y then Z = X else Z = Y end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 6

Computations (abstract machine)
• A computation defines how the execution state is

transformed step by step from the initial state to the final
state

• A single assignment store σ is a set of store variables, a
variable may be unbound, bound to a partial value, or
bound to a group of other variables

• An environment E is mapping from variable identifiers to
variables or values in σ, e.g. {X → x1, Y → x2}

• A semantic statement is a pair
(〈s〉 , E) where 〈s〉 is a statement

• ST is a stack of semantic statements

2

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 7

Computations (abstract machine)
• A computation defines how the execution state is

transformed step by step from the initial state to the final
state

• The execution state is a pair
(ST , σ)

• ST is a stack of semantic statements
• A computation is a sequence of execution states

(ST0 , σ0) → (ST1 , σ1) → (ST2 , σ2) → ...

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 8

Semantics
• To execute a program (i.e., a statement) 〈s〉 the initial

execution state is
([(〈s〉 , ∅)] , ∅)

• ST has a single semantic statement (〈s〉 , ∅)
• The environment E is empty, and the store σ is empty
• [...] denotes the stack
• At each step the first element of ST is popped and

execution proceeds according to the form of the element
• The final execution state (if any) is a state in which ST is

empty

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 9

skip

• The semantic statement is
(skip, E)

• Continue to next execution step

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 10

skip

• The semantic statement is
(skip, E)

• Continue to next execution step

(skip, E)
ST

σ

+
 ST

σ

+

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 11

Sequential composition
• The semantic statement is

(〈s1〉 〈s2〉 , E)
• Push (〈s2〉 , E) and then push (〈s1〉 , E) on ST
• Continue to next execution step

(〈s1〉 〈s2〉 , E)
ST

σ (〈s1〉 , E)
(〈s2〉 , E)

 ST

σ

++

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 12

Calculating with environments
• E is mapping from identifiers to entities (both store variables

and values) in the store
• The notation E(〈y〉)

retrieves the entity x associated with the identifier 〈y〉 from the
store

• The notation E + {〈y〉1 → x1, 〈y〉2 → x2, ... , 〈y〉n → xn }
– denotes a new environment E’ constructed from E by adding

the mappings
{〈y〉1 → x1, 〈y〉2 → x2, ... , 〈y〉n → xn}

– E’(〈z〉) is xk if 〈z〉 is equal to 〈y〉k , otherwise E’(〈z〉) is equal
to E(〈z〉)

• The notation E|{〈y〉1, 〈y〉2, ... , 〈y〉n} denotes the projection of E onto
the set {〈y〉1, 〈y〉2, ... ,〈y〉n}, i.e., E restricted to the members of
the set

3

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 13

Calculating with environments (2)
• E = {X → 1, Y → [2 3], Z → xi}
• E’ = E + {X → 2}
• E’(X) = 2,

E(X) = 1
• E|{X,Y} restricts E to the ’domain’ {X,Y},

i.e., it is equal to {X → 1, Y → [2 3]}

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 14

Calculating with environments (3)
• local X in

X = 1 (E)
local X in

X = 2 (E’)
{Browse X}

end (E)
{Browse X}

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 15

Lexical scoping
• Free and bound identifier occurrences
• An identifier occurrence is bound with respect to a

statement 〈s〉 if it is in the scope of a declaration inside 〈s〉
• A variable identifier is declared either by a ‘local’

statement, as a parameter of a procedure, or implicitly
declared by a case statement

• An identifier occurrence is free otherwise
• In a running program every identifier is bound (i.e.,

declared)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 16

Lexical scoping (2)
• proc {PP X}

local Y in YY = 1 {Browse YY} end
 X = YY

end

Bound OccurrencesBound OccurrencesFree OccurrencesFree Occurrences

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 17

Lexical scoping (3)
• local Arg1 Arg2 in

Arg1 = 111*111
Arg2 = 999*999
ResRes = Arg1*Arg2

end

Bound OccurrencesBound OccurrencesFree OccurrencesFree Occurrences

This is not a runnable program!

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 18

Lexical scoping (4)
• local Res in

local Arg1 Arg2 in
Arg1 = 111*111
Arg2 = 999*999
ResRes = Arg1*Arg2

end
{Browse Res}

end

4

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 19

Lexical scoping (5)
local P Q in

proc {P} {QQ} end
proc {QQ} {Browse hello} end
local Q in

proc {Q} {Browse hi} end
{P}

end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 20

Exercises

46. Translate the following function to the kernel language:
fun {AddList L1 L2}

 case L1 of H1|T1 then

 case L2 of H2|T2 then

 H1+H2|{AddList T1 T2}

 end

 else nil end

end

47. Translate the following function call to the kernel language:
{Browse {Max 5 7}}

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 21

Exercises
48. Explain the difference between static scoping and

dynamic scoping. Give an example program that produces
different results with static and dynamic scoping.

49. Think of a reason why static scoping may be preferable to
dynamic scoping. Think of a reason why dynamic
scoping may be preferable to static scoping.

