
1

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 1

Declarative Computation Model
 Kernel language semantics

Basic concepts, the abstract machine (VRH 2.4.1-2.4.2)

Carlos Varela
RPI

October 9, 2009

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Sequential declarative computation
model

• The single assignment store
– declarative (dataflow) variables
– partial values (variables and values are also called entities)

• The kernel language syntax
• The kernel language semantics

– The environment: maps textual variable names (variable
identifiers) into entities in the store

– Interpretation (execution) of the kernel language elements
(statements) by the use of an abstract machine

– Abstract machine consists of an execution stack of statements
transforming the store
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Kernel language syntax

〈s〉 ::= skip                                              empty statement
     |  〈x〉 = 〈y〉                                      variable-variable binding

|  〈x〉 = 〈v〉 variable-value binding
|  〈s1〉 〈s2〉 sequential composition
| local 〈x〉 in 〈s1〉 end declaration
| if 〈x〉 then 〈s1〉 else 〈s2〉 end conditional
| { 〈x〉 〈y1〉 … 〈yn〉 } procedural application
| case 〈x〉 of 〈pattern〉 then 〈s1〉 else 〈s2〉 end pattern matching

〈v〉 ::=  proc { $ 〈y1〉 … 〈yn〉 } 〈s1〉 end | ...                       value expression

〈pattern〉 ::= ...                                           

The following defines the syntax of a statement, 〈s〉 denotes a statement 
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Examples
• local X in X = 1 end

• local X Y T Z in
X = 5
Y = 10
T = (X>=Y)
if T then Z = X else Z = Y end
{Browse Z}

end

• local S T in
S = proc {$ X Y} Y = X*X end
{S 5 T}
{Browse T}

end
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Procedure abstraction

• Any statement can be abstracted to a procedure by selecting a number
of the ’free’ variable identifiers and enclosing the statement into a
procedure with the identifiers as parameters

• if X >= Y then Z = X else Z = Y end
• Abstracting over all variables

proc {Max X Y Z}
if X >= Y then Z = X else Z = Y end

end
• Abstracting over X and Z

proc {LowerBound X Z}
if X >= Y then Z = X else Z = Y end

end
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Computations (abstract machine)
• A computation defines how the execution state is

transformed step by step from the initial state to the final
state

• A single assignment store σ is a set of store variables, a
variable may be unbound, bound to a partial value, or
bound to a group of other variables

• An environment E is mapping from variable identifiers to
variables or values in σ, e.g. {X → x1, Y → x2}

• A semantic statement is a pair
( 〈s〉 , E )  where 〈s〉 is a statement

• ST is a stack of semantic statements
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Computations (abstract machine)
• A computation defines how the execution state is

transformed step by step from the initial state to the final
state

• The execution state is a pair
( ST , σ )

• ST is a stack of semantic statements
• A computation is a  sequence of execution states

( ST0 , σ0 ) → ( ST1 , σ1 ) → ( ST2 , σ2 ) → ...
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Semantics
• To execute a program (i.e., a statement) 〈s〉 the initial

execution state is
( [ (〈s〉 , ∅) ]  , ∅ )

• ST has a single semantic statement (〈s〉 , ∅)
• The environment E is empty, and the store σ is empty
• [ ... ] denotes the stack
• At each step the first element of ST is popped and

execution proceeds according to the form of the element
• The final execution state (if any) is a state in which ST is

empty
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skip

• The semantic statement is
(skip, E)

• Continue to next execution step
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skip

• The semantic statement is
(skip, E)

• Continue to next execution step

(skip, E)
ST

σ

+
   ST   

σ

+
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Sequential composition
• The semantic statement is

(〈s1〉 〈s2〉 , E)
• Push  (〈s2〉 , E) and then push (〈s1〉 , E) on ST
• Continue to next execution step

(〈s1〉 〈s2〉 , E) 
ST

σ (〈s1〉 , E)
(〈s2〉 , E)

 ST

σ

++
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Calculating with environments
• E is mapping from identifiers to entities (both store variables

and values) in the store
• The notation E(〈y〉)

retrieves the entity x associated with the identifier 〈y〉 from the
store

• The notation E + {〈y〉1 → x1, 〈y〉2 → x2, ... , 〈y〉n → xn }
– denotes a new environment E’ constructed from E by adding

the mappings
{〈y〉1 → x1, 〈y〉2 → x2, ... , 〈y〉n → xn}

–  E’(〈z〉) is xk  if 〈z〉 is equal to 〈y〉k , otherwise E’(〈z〉) is equal
to E(〈z〉)

• The notation E|{〈y〉1, 〈y〉2, ... , 〈y〉n} denotes the projection of E onto
the set {〈y〉1, 〈y〉2, ... ,〈y〉n}, i.e., E restricted to the members of
the set
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Calculating with environments (2)
• E = {X → 1, Y → [2 3], Z → xi}
• E’ = E + {X → 2}
• E’(X) = 2,

E(X) = 1
• E|{X,Y} restricts E to the ’domain’ {X,Y},

i.e., it is equal to {X → 1, Y → [2 3]}
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Calculating with environments (3)
• local X in

X = 1 (E)
local X in

X = 2 (E’)
{Browse X}

end (E)
{Browse X}

end
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Lexical scoping
• Free and bound identifier occurrences
• An identifier occurrence is bound with respect to a

statement 〈s〉 if it is in the scope of a declaration inside 〈s〉
• A variable identifier is declared either by a ‘local’

statement, as a parameter of a procedure, or implicitly
declared by a case statement

• An identifier occurrence is free otherwise
• In a running program every identifier is bound (i.e.,

declared)
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Lexical scoping (2)
• proc {PP X}

local Y in YY = 1 {Browse YY} end
 X = YY

end

Bound OccurrencesBound OccurrencesFree OccurrencesFree Occurrences
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Lexical scoping (3)
• local Arg1 Arg2 in

Arg1 = 111*111
Arg2 = 999*999
ResRes = Arg1*Arg2

end

Bound OccurrencesBound OccurrencesFree OccurrencesFree Occurrences

This is not a runnable program!
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Lexical scoping (4)
• local Res in

local Arg1 Arg2 in
Arg1 = 111*111
Arg2 = 999*999
ResRes = Arg1*Arg2

end
{Browse Res}

end
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Lexical scoping (5)
local P Q in

proc {P}  {QQ} end
proc {QQ} {Browse hello} end
local Q in

proc {Q} {Browse hi} end
{P}

end
end
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Exercises

46. Translate the following function to the kernel language:
fun {AddList L1 L2}

   case L1 of H1|T1 then

      case L2 of H2|T2 then

 H1+H2|{AddList T1 T2}

      end

   else nil end

end

47. Translate the following function call to the kernel language:
{Browse {Max 5 7}}
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Exercises
48. Explain the difference between static scoping and

dynamic scoping. Give an example program that produces
different results with static and dynamic scoping.

49. Think of a reason why static scoping may be preferable to
dynamic scoping.  Think of a reason why dynamic
scoping may be preferable to static scoping.


