
1

C. Varela 1

Typing, State, Parameter Passing
Dynamic and Static Typing (EPL 4.1-4.4, VRH 2.8.3)
Explicit State and Parameter Passing(VRH 6.1-6.4.4)

Carlos Varela
Rensselaer Polytechnic Institute

November 10, 2009

Partially adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

C. Varela 2

Data types
• A datatype is a set of values and an associated set of

operations
• An abstract datatype is described by a set of operations
• These operations are the only thing that a user of the

abstraction can assume
• Examples:

– Numbers, Records, Lists,… (Oz basic data types)
– Stacks, Dictionaries,… (user-defined secure data types)

C. Varela 3

Types of typing
• Languages can be weakly typed

– Internal representation of types can be manipulated by a program
• e.g., a string in C is an array of characters ending in ‘\0’.

• Strongly typed programming languages can be further
subdivided into:
– Dynamically typed languages

• Variables can be bound to entities of any type, so in general
the type is only known at run-time, e.g., Oz, SALSA.

– Statically typed languages
• Variable types are known at compile-time, e.g., C++, Java.

C. Varela 4

Type Checking and Inference

• Type checking is the process of ensuring a program is well-
typed.
– One strategy often used is abstract interpretation:

• The principle of getting partial information about the answers
from partial information about the inputs

• Programmer supplies types of variables and type-checker
deduces types of other expressions for consistency

• Type inference frees programmers from annotating
variable types: types are inferred from variable usage, e.g.
ML.

C. Varela 5

Example: The identity function
• In a dynamically typed language, e.g., Oz, it is possible to write a

generic function, such as the identity combinator:

fun {Id X} X end

• In a statically typed language, it is necessary to assign types to
variables, e.g. in a statically typed variant of Oz you would write:

fun {Id X:integer}:integer X end

These types are checked at compile-time to ensure the function is only
passed proper arguments. {Id 5} is valid, while {Id Id} is not.

C. Varela 6

Example: Improper Operations
• In a dynamically typed language, it is possible to write an improper

operation, such as passing a non-list as a parameter, e.g. in Oz:

declare fun {ShiftRight L} 0|L end
{Browse {ShiftRight 4}} % unintended missuse
{Browse {ShiftRight [4]}} % proper use

• In a statically typed language, the same code would produce a type
error, e.g. in a statically typed variant of Oz you would write:

declare fun {ShiftRight L:List}:List 0|L end
{Browse {ShiftRight 4}} % compiler error!!
{Browse {ShiftRight [4]}} % proper use

2

C. Varela 7

Example: Type Inference
• In a statically typed language with type inference (e.g., ML), it is

possible to write code without type annotations, e.g. using Oz syntax:

declare fun {Increment N} N+1 end
{Browse {Increment [4]}} % compiler error!!
{Browse {Increment 4}} % proper use

• The type inference system knows the type of ’+’ to be:

<number> X <number> <number>

Therefore, Increment must always receive an argument of type
<number> and it always returns a value of type <number>.

C. Varela 8

Static Typing Advantages

• Static typing restricts valid programs (i.e., reduces
language’s expressiveness) in return for:

– Improving error-catching ability
– Efficiency
– Security
– Partial program verification

C. Varela 9

Dynamic Typing Advantages

• Dynamic typing allows all syntactically legal programs to
execute, providing for:

– Faster prototyping (partial, incomplete programs can be tested)
– Separate compilation---independently written modules can more

easily interact--- which enables open software development
– More expressiveness in language

C. Varela 10

Combining static and dynamic
typing

• Programming language designers do not have to make an
all-or-nothing decision on static vs dynamic typing.
– e.g, Java has a root Object class which enables polymorphism

• A variable declared to be an Object can hold an instance of any
(non-primitive) class.

• To enable static type-checking, programmers need to annotate
expressions using these variables with casting operations, i.e., they
instruct the type checker to pretend the type of the variable is different
(more specific) than declared.

• Run-time errors/exceptions can then occur if type conversion
(casting) fails.

• Alice (Saarland U.) is a statically-typed variant of Oz.

C. Varela 11

What is state?
• State is a sequence of

values in time that contains
the intermediate results of a
desired computation

• Declarative programs can
also have state according to
this definition

• Consider the following
program

fun {Sum Xs A}
 case Xs
 of X|Xr then {Sum Xr A+X}
 [] nil then A
 end
end

{Browse {Sum [1 2 3 4] 0}}

C. Varela 12

What is implicit state?
The two arguments Xs and A
represent an implicit state

Xs A
[1 2 3 4] 0
[2 3 4] 1
[3 4] 3
[4] 6
nil 10

fun {Sum Xs A}
 case Xs
 of X|Xr then {Sum Xr A+X}
 [] nil then A
 end
end

{Browse {Sum [1 2 3 4] 0}}

3

C. Varela 13

What is explicit state: Example?

XAn unbound
variable

X
A cell C is created
with initial value 5
X is bound to C

 5

X
The cell C, which X is
bound to, is assigned
the value 6

 6

C

C

C. Varela 14

What is explicit state: Example?

XAn unbound
variable

X
A cell C is
created
with initialvalue 5
X is bound to C

 5

X
The cell C, which X is
bound to, is assigned
the value 6

 6

C

C

• The cell is a value
container with a unique
identity
• X is really bound to
the identity of the cell
• When the cell is
assigned, X does not
change

C. Varela 15

What is explicit state?

• X = {NewCell I}
– Creates a cell with initial value I
– Binds X to the identity of the cell

• Example: X = {NewCell 0}
• {Assign X J}

– Assumes X is bound to a cell C (otherwise exception)
– Changes the content of C to become J

• Y = {Access X}
– Assumes X is bound to a cell C (otherwise exception)
– Binds Y to the value contained in C

C. Varela 16

Examples

• X = {NewCell 0}

• {Assign X 5}

• Y = X

• {Assign Y 10}

• {Access X} == 10 %
returns true

• X == Y % returns true

X 0

X 5

Y

X 10

Y

C. Varela 17

Examples

• X = {NewCell 10}
Y = {NewCell 10}

• X == Y % returns false
• Because X and Y refer to

different cells, with
different identities

• {Access X} == {Access Y}
returns true

X 10

Y 10

C. Varela 18

The model extended with cells

Semantic stack

w = f(x)
z = person(a:y)
y = α1
u = α2
x

α1: w
α2: x
....
....

single assignment
store

mutable store

4

C. Varela 19

The stateful model

〈s〉::= skip empty statement
| 〈s1〉 〈s2〉 statement sequence

 | ...
| {NewCell 〈x〉 〈c〉} cell creation
| {Exchange 〈c〉 〈x〉 〈y〉} cell exchange

Exchange: bind 〈x〉 to the old content of 〈c〉 and set the
content of the cell 〈c〉 to 〈y〉

C. Varela 20

The stateful model

| {NewCell 〈x〉 〈c〉} cell creation
| {Exchange 〈c〉 〈x〉 〈y〉} cell exchange

proc {Assign C X} {Exchange C _ X} end

fun {Access C} X in{Exchange C X X}X end

Exchange: bind 〈x〉 to the old content of 〈c〉 and set the
content of the cell 〈c〉 to 〈y〉

C := X is syntactic sugar for {Assign C X}
@C is syntactic sugar for {Access C}

X=C:=Y is syntactic sugar for {Exchange C X Y}

C. Varela 21

Abstract data types (revisited)
• For a given functionality, there are many ways to package

the ADT. We distinguish three axes.
• Open vs. secure ADT: is the internal representation visible

to the program or hidden?
• Declarative vs. stateful ADT: does the ADT have

encapsulated state or not?
• Bundled vs. unbundled ADT: is the data kept together with

the operations or is it separable?
• Let us see what our stack ADT looks like with some of

these possibilities

C. Varela 22

Stack:
Open, declarative, and unbundled

• Here is the basic stack, as we saw it before:

fun {NewStack} nil end
fun {Push S E} E|S end
fun {Pop S E} case S of X|S1 then E=X S1 end end
fun {IsEmpty S} S==nil end

• This is completely unprotected. Where is it useful?
Primarily, in small programs in which expressiveness is
more important than security.

C. Varela 23

Stack:
Secure, declarative, and unbundled
• We can make the declarative stack secure by using a wrapper:

local Wrap Unwrap
in

{NewWrapper Wrap Unwrap}
fun {NewStack} {Wrap nil} end
fun {Push S E} {Wrap E|{Unwrap S}} end
fun {Pop S E} case {Unwrap S} of X|S1 then E=X {Wrap S1} end end
fun {IsEmpty S} {Unwrap S} ==nil end

end

• Where is this useful? In large programs where we want to protect the
implementation of a declarative component.

C. Varela 24

Stack:
Secure, stateful, and unbundled

• Let us combine the wrapper with state:
local Wrap Unwrap
in

{NewWrapper Wrap Unwrap}
fun {NewStack} {Wrap {NewCell nil}} end
proc {Push W X} C={Unwrap W} in {Assign C X|{Access C}} end
fun {Pop W} C={Unwrap W} in

case {Access C} of X|S then {Assign C S} X end
end
fun {IsEmpty S} {Access {Unwrap W}}==nil end

end
• This version is stateful but lets us store the stack separate from the operations.

The same operations work on all stacks.

5

C. Varela 25

Stack:
Secure, stateful, and bundled

• This is the simplest way to make a secure stateful stack:

proc {NewStack ?Push ?Pop ?IsEmpty}
C={NewCell nil}

in
proc {Push X} {Assign C X|{Access C}} end
fun {Pop} case {Access C} of X|S then {Assign C S} X end end
fun {IsEmpty} {Access C} ==nil end

end
• Compare the declarative with the stateful versions: the declarative

version needs two arguments per operation, the stateful version uses
higher-order programming (instantiation)

• With some syntactic support, this is object-based programming

C. Varela 26

Four ways to package a stack
• Open, declarative, and unbundled: the usual declarative

style, e.g., in Prolog and Scheme
• Secure, declarative, and unbundled: use wrappers to make

the declarative style secure
• Secure, stateful, and unbundled: an interesting variation on

the usual object-oriented style
• Secure, stateful, and bundled: the usual object-oriented

style, e.g., in Smalltalk and Java
• Other possibilities: there are four more possibilities!

Exercise: Try to write all of them.

C. Varela 27

Parameter Passing Mechanisms
• Operations on data types have arguments and results. Many

mechanisms exist to pass these arguments and results between
calling programs and abstractions, e.g.:

– Call by reference
– Call by variable
– Call by value
– Call by value-result
– Call by name
– Call by need

• We will show examples in Pascal-like syntax, with semantics
given in Oz language.

C. Varela 28

Call by reference
proc {Sqr A ?B}

B=A*A

end

local I in

{Sqr 25 I}

{Browse I}

end

procedure sqr(a:integer, var b:integer);
begin

b:=a*a
end

var i:integer;
sqr(25, i);
writeln(i);

• The variable passed as an argument can be changed inside the procedure
with visible effects outside after the call.
• The B inside Sqr is a synonym (an alias) of the I outside.
• The default mechanism in Oz is call by reference.

C. Varela 29

Call by variable
proc {Sqr A}

A:=@A*@A

end

local I = {NewCell 0} in

I := 25

{Sqr I}

{Browse @I}

end

procedure sqr(var a:integer);
begin

a:=a*a
end

var i:integer;
i:=25;
sqr(i);
writeln(i);

• Special case of call by reference.
• The identity of the cell is passed to the procedure.
• The A inside Sqr is a synonym (an alias) of the I outside.

C. Varela 30

Call by value
proc {Sqr A}

C = {NewCell A}

in

C := @C + 1

{Browse @C*@C}

end

{Sqr 25}

procedure sqr(a:integer);
begin

a:=a+1;
writeln(a*a)

end

sqr(25);

• A value is passed to the procedure. Any changes to the value inside the
procedure are purely local, and therefore, not visible outside.
• The local cell C is initialized with the argument A of Sqr.
• Java uses call by value for both primitive values and object references.
• SALSA uses call by value in both local and remote message sending.

6

C. Varela 31

Call by value-result
proc {Sqr A}

D = {NewCell @A}
in

D := @D * @D
A := @D

end
local C = {NewCell 0} in

C := 25
{Sqr C}
{Browse @C}

end

procedure sqr(inout a:integer);
begin

a:=a*a
end

var i:integer;
i:=25;
sqr(i);
writeln(i);

• A modification of call by variable. Variable argument can be modified.
• There are two mutable variables: one inside Sqr (namely D) and one outside
(namely C). Any intermediate changes to the variable inside the procedure are
purely local, and therefore, not visible outside.
• inout is ADA terminology. C. Varela 32

Call by name
proc {Sqr A}

{A} := @{A} * @{A}

end

local C = {NewCell 0} in

C := 25

{Sqr fun {$} C end}

{Browse @C}

end

procedure sqr(callbyname a:integer);
begin

a:=a*a
end

var i:integer;
i:=25;
sqr(i);
writeln(i);

• Call by name creates a function for each argument (a thunk). Calling the
function evaluates and returns the argument. Each time the argument is
needed inside the procedure, the thunk is called.
• Thunks were originally invented for Algol 60.

C. Varela 33

Call by need
proc {Sqr A}

B = {A} % only if argument used!!
in

B := @B * @B
end

local C = {NewCell 0} in
C := 25
{Sqr fun {$} C end}
{Browse @C}

end

procedure sqr(callbyneed a:integer);
begin

a:=a*a
end

var i:integer;
i:=25;
sqr(i);
writeln(i);

• A modification of call by name. The thunk is evaluated at most once.
The result is stored and used for subsequent evaluations.
• Call by need is the same as lazy evaluation. Haskell uses lazy evaluation.
• Call by name is lazy evaluation without memoization.

C. Varela 34

Which one is right or best?
• It can be argued that call by reference is the most primitive.

– Indeed, we have coded different parameter passing styles using call by
reference and a combination of cells and procedure values.

– Arguably, call by value (along with cells and procedure values) is just as
general. E.g., the example given for call by variable would also work in a
call by value primitive mode. Exercise: Why?

• When designing a language, the question is: for which mechanism(s) to
provide linguistic abstractions?

– It largely depends on intended language use, e.g., call by name and call by
need are integral to programming languages with lazy evaluation (e.g.,
Haskell and Miranda.)

– For concurrent programs, call by value-result can be very useful (e.g. Ada.)
– For distributed programs, call by value is best due to state encapsulation

(e.g., SALSA).

C. Varela 35

More parameter passing styles
• Some languages for distributed computing have support for call-by-

move.
– Arguments to remote procedure calls are temporarily migrated to the remote

location for the time of the remote procedure execution (e.g., Emerald).
– A dual approach is to migrate the object whose method is to be invoked to

the client side before method invocation (e.g., Oz).

• Java Remote Method Invocation (RMI) dynamically determines
mechanism to use depending on argument types:

– It uses call by reference in remote procedure calls, if and only if, arguments
implement a special (Remote) interface

– Otherwise, arguments are passed using call by value.
• => Semantics of method invocation is different for local and remote

method invocations!!
– There is no language support for object migration in Java (as there is in

other languages, e.g., SALSA, Oz, Emerald), so call by move is not
possible.

C. Varela 36

Exercises
70. VRH Exercise 6.10.2 (page 482).
71. Explain why the call by variable example given would also work

over a call by value primitive parameter passing mechanism. Give an
example for which this is not the case.

72. Explain why call by need cannot always be encoded as shown in the
given example by producing a counter-example. (Hint: recall the
difference between normal order evaluation and applicative order
evaluation in termination of lambda calculus expression evaluations.)

73. Create a program in which call by name and call by need parameter
passing styles result in different outputs.

74. Can type inference always deduce the type of an expression?
– If not, give a counter-example. How would you design a language to

help it statically infer types for non-trivial expressions?

