
1

C. Varela 1

Concurrent Distributed Mobile
(Systems) Programming

Universal Actors, SALSA, Coordination Abstractions

Carlos Varela
RPI

November 9, 2010

C. Varela 2

Programming distributed systems

•  It is harder than concurrent programming!
•  Yet unavoidable in today’s information-oriented society, e.g.:

–  Internet
–  Web services
–  Grid/cloud computing

•  Communicating processes with independent address spaces
•  Limited network performance

–  Orders of magnitude difference between WAN, LAN, and single machine
communication.

•  Localized heterogeneous resources, e.g, I/O, specialized devices.
•  Partial failures, e.g. hardware failures, network disconnection
•  Openness: creates security, naming, composability issues.

2

C. Varela 3

Actors/SALSA
•  Actor Model

–  A reasoning framework to model concurrent
computations

–  Programming abstractions for distributed open
systems

G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

•  SALSA
–  Simple Actor Language System and

Architecture
–  An actor-oriented language for mobile and

internet computing
–  Programming abstractions for internet-based

concurrency, distribution, mobility, and
coordination

C. Varela and G. Agha, “Programming dynamically reconfigurable
open systems with SALSA”, ACM SIGPLAN Notices, OOPSLA
2001, 36(12), pp 20-34.

C. Varela 4

SALSA and Java

•  SALSA source files are compiled into Java source files before being compiled into
Java byte code.

•  SALSA programs may take full advantage of the Java API.

3

C. Varela 5

Hello World Example

module examples.helloworld;

behavior HelloWorld {

 void act(String[] args) {

 standardOutput <- print("Hello") @
 standardOutput <- println("World!");

 }

}

C. Varela 6

Hello World Example

•  The act(String[] args) message handler is
similar to the main(…) method in Java and is used to
bootstrap SALSA programs.

•  When a SALSA program is executed, an actor of the given
behavior is created and an act(args) message is sent to
this actor with any given command-line arguments.

•  References to standardOutput, standardInput
and standardError actors are available to all SALSA
actors.

4

C. Varela 7

SALSA Support for Actors

•  Programmers define behaviors for actors.

•  Messages are sent asynchronously.

•  State is modeled as encapsulated objects/primitive types.

•  Messages are modeled as potential method invocations.

•  Continuation primitives are used for coordination.

C. Varela 8

Reference Cell Example

module examples.cell;

behavior Cell {
 Object content;

 Cell(Object initialContent) {
 content = initialContent;
 }

 Object get() { return content; }

 void set(Object newContent) {
 content = newContent;
 }

}

5

C. Varela 9

Actor Creation

•  To create an actor:

 TravelAgent a = new TravelAgent();

C. Varela 10

Message Sending

•  To create an actor:

TravelAgent a = new TravelAgent();

•  To send a message:

a <- book(flight);

6

C. Varela 11

Causal order
•  In a sequential program all execution states are totally

ordered

•  In a concurrent program all execution states of a given actor
are totally ordered

•  The execution state of the concurrent program as a whole is
partially ordered

C. Varela 12

Total order
•  In a sequential program all execution states are totally

ordered

computation step

sequential
execution

7

C. Varela 13

Causal order in the actor model

•  In a concurrent program all execution states of a given
actor are totally ordered

•  The execution state of the concurrent program is partially
ordered

computation step

actor A1

actor A2

actor A3

Create new
actor

Send a
message

C. Varela 14

Nondeterminism

•  An execution is nondeterministic if there is a computation
step in which there is a choice what to do next

•  Nondeterminism appears naturally when there is
asynchronous message passing
–  Messages can arrive or be processed in an order different from the

sending order.

8

C. Varela 15

Example of nondeterminism

time

Actor 1

a<-m1();

time

Actor 2

Actor a can receive messages m1() and m2() in any order.

a<-m2();

time

Actor a

C. Varela 16

Coordination Primitives

•  SALSA provides three main coordination constructs:
–  Token-passing continuations

•  To synchronize concurrent activities
•  To notify completion of message processing
•  Named tokens enable arbitrary synchronization (data-flow)

–  Join blocks
•  Used for barrier synchronization for multiple concurrent

activities
•  To obtain results from otherwise independent concurrent

processes
–  First-class continuations

•  To delegate producing a result to a third-party actor

9

C. Varela 17

Token Passing Continuations
•  Ensures that each message in the continuation expression is sent after

the previous message has been processed. It also enables the use of a
message handler return value as an argument for a later message
(through the token keyword).

–  Example:

a1 <- m1() @
a2 <- m2(token);

Send m1 to a1 asking a1 to forward the result of processing m1 to a2
(as the argument of message m2).

C. Varela 18

Named Tokens
•  Tokens can be named to enable more loosely-coupled synchronization

–  Example:

token t1 = a1 <- m1();
token t2 = a2 <- m2();
token t3 = a3 <- m3(t1);
token t4 = a4 <- m4(t2);
a <- m(t1,t2,t3,t4);

Sending m(…) to a will be delayed until messages m1()..m4() have been
processed. m1() can proceed concurrently with m2().

10

C. Varela 19

Causal order in the actor model

computation step

actor A1

actor A2

actor A3

create new
actor

bind a token

synchronize on a token

x

y

C. Varela 20

Cell Tester Example

module examples.cell;

behavior CellTester {

 void act(String[] args) {

 Cell c = new Cell(“Hello”);
 standardOutput <- print(”Initial Value:”) @
 c <- get() @
 standardOutput <- println(token) @
 c <- set(“World”) @
 standardOutput <- print(”New Value:”) @
 c <- get() @
 standardOutput <- println(token);

 }
}

11

C. Varela 21

Join Blocks

•  Provide a mechanism for synchronizing the processing of a set of
messages.

•  Set of results is sent along as a token containing an array of results.
–  Example:

Actor[] actors = { searcher0, searcher1,
 searcher2, searcher3 };

join {
 for (int i=0; i < actors.length; i++){
 actors[i] <- find(phrase);
 }
} @ resultActor <- output(token);

Send the find(phrase) message to each actor in actors[] then after all
have completed send the result to resultActor as the argument of an
output(…) message.

C. Varela 22

Example: Acknowledged
Multicast

join{ a1 <- m1(); a2 <- m2(); … an <- mn(); } @
 cust <- n(token);

12

C. Varela 23

Lines of Code Comparison

31 100 168 Acknowledged Multicast

SALSA Foundry Java

C. Varela 24

First Class Continuations

•  Enable actors to delegate computation to a third party independently of
the processing context.

•  For example:

 int m(…){
 b <- n(…) @ currentContinuation;

 }
Ask (delegate) actor b to respond to this message m on behalf of current actor

(self) by processing its own message n.

13

C. Varela 25

Delegate Example

module examples.fibonacci;

behavior Calculator {

 int fib(int n) {
 Fibonacci f = new Fibonacci(n);
 f <- compute() @ currentContinuation;
 }
 int add(int n1, int n2) {return n1+n2;}

 void act(String args[]) {
 fib(15) @ standardOutput <- println(token);
 fib(5) @ add(token,3) @
 standardOutput <- println(token);
 }

}

C. Varela 26

Fibonacci Example
module examples.fibonacci;

behavior Fibonacci {
 int n;

 Fibonacci(int n) { this.n = n; }

 int add(int x, int y) { return x + y; }

 int compute() {
 if (n == 0) return 0;
 else if (n <= 2) return 1;
 else {
 Fibonacci fib1 = new Fibonacci(n-1);
 Fibonacci fib2 = new Fibonacci(n-2);
 token x = fib1<-compute();
 token y = fib2<-compute();
 add(x,y) @ currentContinuation;
 }
 }

 void act(String args[]) {
 n = Integer.parseInt(args[0]);
 compute() @ standardOutput<-println(token);
 }

}

14

C. Varela 27

Fibonacci Example 2
module examples.fibonacci2;

behavior Fibonacci {

 int add(int x, int y) { return x + y; }

 int compute(int n) {
 if (n == 0) return 0;
 else if (n <= 2) return 1;
 else {
 Fibonacci fib = new Fibonacci();
 token x = fib <- compute(n-1);
 compute(n-2) @ add(x,token) @ currentContinuation;
 }
 }

 void act(String args[]) {
 int n = Integer.parseInt(args[0]);
 compute(n) @ standardOutput<-println(token);
 }

}

C. Varela 28

Execution of
salsa Fibonacci 6

F6

F5

F4 F2

F3

F2

F1

F2

F3

F2

F1

F4

F1 F3

F2

Create new actor

Synchronize on
result

Non-blocked actor

15

C. Varela 29

Worldwide Computing

•  Distributed computing over the Internet.
•  Access to large number of processors offsets slow

communication and reliability issues.
•  Seeks to create a platform for many applications.

C. Varela 30

World-Wide Computer (WWC)

•  Worldwide computing platform.
•  Provides a run-time system for universal actors.
•  Includes naming service implementations.
•  Remote message sending protocol.
•  Support for universal actor migration.

16

C. Varela 31

Abstractions for Worldwide
Computing

•  Universal Actors, a new abstraction provided to guarantee unique actor
names across the Internet.

•  Theaters, extended Java virtual machines to provide execution
environment and network services to universal actors:
–  Access to local resources.
–  Remote message sending.
–  Migration.

•  Naming service, to register and locate universal actors, transparently
updated upon universal actor creation, migration, recollection.

C. Varela 32

Universal Naming

•  Consists of human readable names.
•  Provides location transparency to actors.
•  Name to location mappings efficiently updated as actors

migrate.

17

C. Varela 33

Universal Actor Naming
•  UAN servers provide mapping between static names and

dynamic locations.
–  Example:

 uan://wwc.cs.rpi.edu/cvarela/calendar

Name server
address and

port.

Actor name.

C. Varela 34

Universal Actors

•  Universal Actors extend the actor model by associating a
universal name and a location with the actor.

•  Universal actors may migrate between theaters and the
name service keeps track of their current location.

18

C. Varela 35

Universal Actor Implementation

collection of
objects

mailbox

Thread

UAN UAL

Theater

C. Varela 36

WWC Theaters

Theater address
and port. Actor location.

19

C. Varela 37

WWC Theaters

•  Theaters provide an execution environment for actors.
•  Provide a layer beneath actors for message passing and

migration.
•  Example locator:

 rmsp://wwc.cs.rpi.edu/calendarInstance10

Theater address
and port. Actor location.

C. Varela 38

Environment Actors

•  Theaters provide access to environment actors.
•  Environment actors perform actions specific to the theater

and are not mobile.
•  Include standard input, output and error stream actors.

20

C. Varela 39

Remote Message Sending Protocol

•  Messages between remote actors are sent using the Remote
Message Sending Protocol (RMSP).

•  RMSP is implemented using Java object serialization.
•  RMSP protocol is used for both message sending and actor

migration.
•  When an actor migrates, its locator (UAL) changes but its

name (UAN) does not.

C. Varela 40

Universal Actor Naming Protocol

21

C. Varela 41

Universal Actor Naming Protocol

•  UANP includes messages for:

–  Binding actors to UAN, UAL pairs
–  Finding the locator of a universal actor given its UAN
–  Updating the locator of a universal actor as it migrates
–  Removing a universal actor entry from the naming service

•  SALSA programmers need not use UANP directly in
programs. UANP messages are transparently sent by
WWC run-time system.

C. Varela 42

UANP Implementations

•  Default naming service implementation stores UAN to UAL mapping in name
servers as defined in UANs.

–  Name server failures may induce universal actor unreachability.

•  Distributed (Chord-based) implementation uses consistent hashing and a ring
of connected servers for fault-tolerance. For more information, see:

Camron Tolman and Carlos Varela. A Fault-Tolerant Home-Based Naming Service
For Mobile Agents. In Proceedings of the XXXI Conferencia Latinoamericana de
Informática (CLEI), Cali, Colombia, October 2005.

Tolman C. A Fault-Tolerant Home-Based Naming Service for Mobile Agents. Master's
Thesis, Rensselaer Polytechnic Institute, April 2003.

22

C. Varela 43

SALSA Language Support for Worldwide
Computing

•  SALSA provides linguistic abstractions for:

–  Universal naming (UAN & UAL).
–  Remote actor creation.
–  Message sending.
–  Migration.
–  Coordination.

•  SALSA-compiled code closely tied to WWC run-time platform.

C. Varela 44

Universal Actor Creation

•  To create an actor locally

TravelAgent a = new TravelAgent();

•  To create an actor with a specified UAN and UAL:

TravelAgent a = new TravelAgent() at (uan, ual);

•  At current location with a UAN:

TravelAgent a = new TravelAgent() at (uan);

23

C. Varela 45

Message Sending

TravelAgent a = new TravelAgent();

a <- book(flight);

C. Varela 46

Remote Message Sending

•  Obtain a remote actor reference by name.

TravelAgent a = (TravelAgent)
TravelAgent.getReferenceByName(“uan://
myhost/ta”);

a <- printItinerary();

24

C. Varela 47

Reference Cell Service Example

module examples.cell;

behavior Cell implements ActorService{
 Object content;

 Cell(Object initialContent) {
 content = initialContent;
 }

 Object get() {
 standardOutput <- println (“Returning:”+content);
 return content;
 }

 void set(Object newContent) {
 standardOutput <- println (“Setting:”+newContent);
 content = newContent;
 }

}

C. Varela 48

Reference Cell Client Example

module examples.cell;

behavior GetCellValue {

 void act(String[] args) {
 if (args.length != 1){

 standardOutput <- println(“Usage:
 salsa examples.cell.GetCellValue <CellUAN>”);
 return;
 }

 Cell c = (Cell)
 Cell.getReferenceByName(new UAN(args[0]));

 standardOutput <- print(“Cell Value”) @
 c <- get() @
 standardOutput <- println(token);

 }
}

25

C. Varela 49

Migration

•  Obtaining a remote actor reference and migrating
the actor.

 TravelAgent a = (TravelAgent)
 TravelAgent.getReferenceByName
 (“uan://myhost/ta”);

 a <- migrate(“rmsp://yourhost/travel”) @
 a <- printItinerary();

C. Varela 50

Moving Cell Tester Example
module examples.cell;

behavior MovingCellTester {

 void act(String[] args) {

 if (args.length != 3){
 standardOutput <- println(“Usage:
 salsa examples.cell.MovingCellTester <UAN> <UAL1> <UAL2>”);
 return;
 }

 Cell c = new Cell(“Hello”) at (new UAN(args[0]), new UAL(args[1]));

 standardOutput <- print(”Initial Value:”) @
 c <- get() @ standardOutput <- println(token) @
 c <- set(“World”) @
 standardOutput <- print(”New Value:”) @
 c <- get() @ standardOutput <- println(token) @
 c <- migrate(args[2]) @

 c <- set(“New World”) @
 standardOutput <- print(”New Value at New Location:”) @
 c <- get() @ standardOutput <- println(token);
 }
}

26

C. Varela 51

Agent Migration Example

behavior Migrate {

 void print() {
 standardOutput<-println("Migrate actor is here.");
 }

 void act(String[] args) {

 if (args.length != 3) {
 standardOutput<-println("Usage: salsa migration.Migrate <UAN> <srcUAL>

 <destUAL>");
 return;
 }

 UAN uan = new UAN(args[0]);
 UAL ual = new UAL(args[1]);

 Migrate migrateActor = new Migrate() at (uan, ual);

 migrateActor<-print() @
 migrateActor<-migrate(args[2]) @
 migrateActor<-print();
 }
}

C. Varela 52

Migration Example

•  The program must be given valid universal actor name and
locators.
–  Appropriate name services and theaters must be running.

•  After remotely creating the actor. It sends the print
message to itself before migrating to the second theater
and sending the message again.

27

C. Varela 53

Compilation and Execution
$ java salsac.SalsaCompiler Migrate.salsa
SALSA Compiler Version 1.0: Reading from file Migrate.salsa . . .
SALSA Compiler Version 1.0: SALSA program parsed successfully.
SALSA Compiler Version 1.0: SALSA program compiled successfully.
$ javac Migrate.java
$ java Migrate
$ Usage: java Migrate <uan> <ual> <ual>

•  Compile Migrate.salsa file into Migrate.java.
•  Compile Migrate.java file into Migrate.class.
•  Execute Name Server
•  Execute Theater 1 and Theater 2 Environments
•  Execute Migrate in any computer

C. Varela 54

Migration Example

theater
1

theater
2

The actor will print "Migrate actor is
here." at theater 1 then at theater 2.

UAN
Server

28

C. Varela 55

World Migrating Agent Example

150-160 ms
240-250 ms
3-7 s
25-30 s

LAN minimal actor migration
LAN 100Kb actor migration
WAN minimal actor migration
WAN 100Kb actor migration

148 us
30-60 ms
2-3 s

Local message sending
LAN message sending
WAN message sending

386us Local actor creation

Sparc 20 Solaris 2.6 JDK 1.1.6 Tokyo, Japan solar.isr.co.jp

Pentium II 350Mhz Linux 2.2.5 JDK 1.2pre2 Paris, France vulcain.ecoledoc.lip6.fr

Ultra 2 Solaris 2.5.1 JDK 1.1.6 Urbana IL, USA yangtze.cs.uiuc.edu

Processor OS/JVM Location Host

C. Varela 56

Address Book Service

module examples.addressbook;

behavior AddressBook implements ActorService {

 Hashtable name2email;
 AddressBook() {

 name2email = new HashTable();
 }

 String getName(String email) { … }
 String getEmail(String name) { … }
 boolean addUser(String name, String email) { … }

 void act(String[] args) {
 if (args.length != 0){

 standardOutput<-println(“Usage: salsa -Duan=<uan> -Dual=<ual>
 examples.addressbook.AddressBook”);
 }

 }
}

29

C. Varela 57

Address Book Add User
Example

module examples.addressbook;

behavior AddUser {
 void act(String[] args) {

 if (args.length != 3){
 standardOutput<-println(“Usage: salsa
 examples.addressbook.AddUser <BookUAN> <Name> <Email>”);
 return;
 }
 AddressBook book = (AddressBook)
 AddressBook.getReferenceByName(new UAN(args[0]));
 book<-addUser(args(1), args(2));

 }
}

C. Varela 58

Address Book Get Email
Example

module examples.addressbook;

behavior GetEmail {
 void act(String[] args) {

 if (args.length != 2){
 standardOutput <- println(“Usage: salsa
 examples.addressbook.GetEmail <BookUAN> <Name>”);
 return;
 }
 getEmail(args(0),args(1));
 }

 void getEmail(String uan, String name){
 AddressBook book = (AddressBook)
 AddressBook.getReferenceByName(uan);
 standardOutput <- print(name + “’s email: “) @
 book <- getEmail(name) @
 standardOutput <- println(token);
 }

}

30

C. Varela 59

Address Book Migrate Example

module examples.addressbook;

behavior MigrateBook {
 void act(String[] args) {

 if (args.length != 2){
 standardOutput<-println(“Usage: salsa
 examples.addressbook.Migrate <BookUAN> <NewUAL>”);
 return;
 }
 AddressBook book = (AddressBook)
 AddressBook.getReferenceByName(new UAN(args[0]));
 book<-migrate(args(1));

 }
}

C. Varela 60

Exercises

1.  How would you implement the join continuation
linguistic abstraction in terms of message passing?

2.  Download and execute the CellTester.salsa
example.

3.  Write a solution to the Flavius Josephus problem in
SALSA. A description of the problem is at Van Roy and
Haridi’s book, Section 7.8.3 (page 558).

31

C. Varela 61

Exercises

4.  How would you implement the join continuation linguistic
abstraction considering different potential distributions of its
participating actors?

5.  Download and execute the Agent.salsa example.

6.  Modify the lock example in the SALSA distribution to include a wait/
notify protocol, as opposed to “busy-waiting” (or rather “busy-
asking”).

7.  Van Roy and Haridi’s Book Exercise 11.11.3 (pg 746). Implement
the example using SALSA/WWC.

