
CSCI-1200 Data Structures — Fall 2010
Homework 5 — Unrolled Linked Lists

In this assignment you will modify the dslist class to implement an unrolled linked list data structure.
This data structure is very similar to a standard doubly linked list, except that more than one element
may be stored at each node. This data structure can have performance advantages (both in memory and
running time) over a standard linked list when storing small items and can be used to better align data in
the cache. You’re welcome to read more about unrolled linked lists on Wikipedia (but you’re not allowed
to search for or use any code or pseudocode that might be available online!). Please read the entire
handout before beginning your implementation.

To complete the assignment you will modify the helper classes (Node and list_iterator) as well as the
main class, dslist, which will be renamed “UnrolledLL”. Below is a picture of the relationships between
the classes (compare this to the picture of the dslist class from Lecture 11):

NULL

26

elements:

num_elements:

next:

elements:

num_elements:

next:

prev:

elements:

num_elements:

next:

prev:

10 11 12 13 14 15 16 17 18 22 23

Node<int>Node<int>Node<int>

prev:

NULL

ptr:

list_iterator<int>

head:

UnrolledLL<int>

tail:
size:

offset: 3

14

6

19 20 21

Each Node object contains a fixed size array (size = 6 in the above example) that will store 1 or more
elements from the list. The elements are ordered from left to right. From the outside, this unrolled linked
list should perform exactly like an STL list containing the numbers 10 through 23 in sorted order. Note
that to match the behavior, the list_iterator object must also change. The iterator must keep track of
not only which Node it refers to, but also which element within the Node it’s on. This can be done with a
simple offset index. In the above example, the iterator refers to the element “19”.

Just like regular linked lists, the unrolled linked list supports speedy erase operations from the middle of
the list. For example, if we call erase with the iterator shown above, this is the resulting picture:

NULL

26

elements:

num_elements:

next:

elements:

num_elements:

next:

prev:

elements:

num_elements:

next:

prev:

10 11 12 13 14 15 16 17 18 22 23

Node<int>Node<int>Node<int>

prev:

NULL

ptr:

list_iterator<int>

head:

UnrolledLL<int>

tail:
size:

offset: 3

20 21

5

13

Note that the size of the list has decreased by one, the element 19 has been removed from the middle
node, the elements after 19 have been shifted to the left, and the number of elements in that node has been
decreased. It’s perfectly OK for some of the nodes to be only partially filled. (If we tried to enforce that
all nodes stay full, this operation would become just as expensive as the STL vector::erase operation!)

Your Tasks

Your new data structure should be a templated class named UnrolledLL and its public interface should
mimic the STL list container class. It should support the member functions: size, front, back,
push_back, pop_back, push_front, pop_front, erase, and insert. Like an STL list, the public in-
terface provides bi-directional forward iterators (i.e., ++ and -- operations), but you don’t need to do
reverse iterators. Your class constructors, assignment operator, & destructor should properly allocate and
deallocate the necessary dynamic memory. Similar to Homework 3, you must provide an output operator
for your data structure that prints an ASCII version of the internal data structures. We provide examples
of the information that should be contained in this output, but your formatting may be different.

The number of elements stored in each Node is fixed at compile time, but you should try different values as
you work. Please use a global constant defined at the top of your UnrolledLL class header file to control
this. Your submitted assignment should have 6 elements per node:

const int NUM_ELEMENTS_PER_NODE = 6;

To get started, we highly recommend that you study and heavily borrow from the dslist class that we
discussed in Lecture 11. The code is available on the course website. We provide a main.cpp file that
will exercise the required features of your class, but it does not include tests for each “corner” case. You
should add your own test cases to the bottom of the main.cpp file. Discuss in your README.txt file your
strategy for thoroughly debugging your assignment.

Evaluation

What is the order notation of each of the member functions in your class? Discuss any differences between
the UnrolledLL, dslist, and STL list classes. Evaluate the memory usage of your initial implementation
in the worst case. Give a specific example sequence of operations where the data structure is inefficient.
What is the average number of elements per node in this case? Discuss in your README.txt.

Extra Credit

For extra credit, change your implementation to improve this worst case memory performance. The typical
strategy for this data structure is to incrementally merge or split the contents of neighboring nodes such
that each node is at least 50% full (except possibly the last node) at the end of each operation. Which
operations did you modify? The order notation of these operations should not change. Discuss in your
README.txt.

Additional Information

You may not use STL vectors or lists for the implementation of your new data structure.
STL lists are only allowed in the main.cpp to test the new data structure and make sure it matches the
standard interface for lists.

Do all of your work in a new folder named hw5 inside of your homeworks directory. Use good coding
style when you design and implement your program. Be sure to make up new test cases to fully test your
program and don’t forget to comment your code! Use the template README.txt to list your collaborators
and any notes you want the grader to read. When you are finished please zip up your hw5 folder exactly
as instructed for the previous assignments and submit it through the course webpage.

2

