CSCI-1200 Data Structures — Fall 2010
Homework 10 — Multiple Inheritance & Exceptions

For this assignment you will build a class inheritance structure to match the hierarchy of shapes. Your
finished program will read lists of 2D point coordinates from a file, determine the type of shape described
by each list of points, and then output various statistics about the shapes to a file. We will use a somewhat
quirky method to determine the type of each shape. We will pass the list of points to each specialized
shape constructor in turn, and if the constructor doesn’t fail, then we know that that list of points is in
fact that type of shape. Remember, the only way for a constructor to fail is to throw an exception.

Shape Hierarchy

You are required to recognize 14 different shapes: Polygon, Triangle, Quadrilateral, Isosceles Triangle,
Right Triangle, Isosceles Right Triangle, Equilateral Triangle, Trapezoid, Kite, Parallelogram, Isosceles
Trapezoid, Rectangle, Rhombus, and Square. Note that a particular shape may be correctly labeled by
more than one of these names. For example a Square is also a Quadrilateral.

For the first part of the homework you must draw a detailed diagram of the class hierarchy. The diagram
must include all 14 different shapes. You should draw arrows indicating all of the inheritance relationships.
To receive full credit, the diagram should be legible, neat, and well organized, with no messy scribbles or
cross outs, a consistent (up or down) orientation to the edges, and few or no arrow crossings. You do not
need to include any of the member variables or member functions in this diagram. We are just looking for
the high level relationships between class names.

Important Note: There is some debate about the exact definitions of the relationships of some of these
shapes. One of the more contentious is the definition of an Isosceles Trapezoid. Is a Rectangle an Isosceles
Trapezoid? Is a Rhombus an Isosceles Trapezoid? Some say “no” to both questions, and insist that a
Trapezoid has exactly one pair of parallel edges. Others say “yes” to both, as long as one pair is parallel
and the other pair is equal length, it’s an Isosceles Trapezoid. We will apply the following definition:
The two base angles of an Isosceles Trapezoid must be equal, which means that the shape has bilateral
symmetry around the perpendicular bisector of the base. Thus, a Rectangle is an Isosceles Trapezoid and
a Rhombus is not an Isosceles Trapezoid.

Since many of you will draw this using pen/pencil & paper, this part of the homework is due in your
normal lab section on Wednesday, December 8th. Even if you choose to draw the diagram electron-
ically, you are still required to print it out and submit the paper in your normal lab section on Wednesday,
December 8th. You may not use late days for this portion of the assignment.

Provided Code

We have provided code that implements all of the I/O for this homework assignment. The executable
expects 2 command line arguments, the names of the input and output files. The input file contains a
number of lines of data. Each line begins with a string name followed by 3 or more 2D coordinate wvertices.
The output from the program should be written to a file. The output includes basic data on the 14 different
shape classes: for each shape class, how many of the input shapes are members of each class, and what are
the names associated with those members? Also the output lists data on the shapes with all equal angles,
shapes with all equal edges, and shapes with at least one right angle.

The provided code includes all of the code to call the constructors of the 14 different classes, generally
ordered from most specific/constrained to least specific. For example, the program will try to create a
Square with the data first, and only if that constructor fails (throws an exception) will the program try to
create a Quadrilateral.

We also include a utilities.h file with a number of simple geometric operations: e.g., calculate the
distance between two points, calculate the angle between two edges, and compare two distances or two
angles and judge if they are sufficiently close to be called “equal”. Remember that you usually don’t want



to check if two floating point numbers are equal; instead, check if the difference is below an appropriate
tolerance. Please look through the provided code before you begin your implementation.

Important Note: You should not need to modify the provided code.

Your Implementation

Your task for this assignment is to implement the 14 shape classes. You should break up the code into at
least one new .h file and at least one new .cpp file. Some hints about the implementation:

e In our sample solution, only one class has member variables, the base class. The two variables are
the std: :string name and an std: :vector<Point> of the wvertices.

e In our sample solution, we have implemented one constructor for each class, with specific arguments:
the name and the vertices. We do not need to define the default constructor, the copy constructor,
or the destructor.

e In organizing your code for this assignment, try to avoid unnecessarily duplicating code. For example,
don’t implement the HasARightAngle function in every class. Instead, when possible, allow the
derived class to rely on the implementation of that function in its parent class. Similarly, don’t
recalculate measurement data if you can deduce information from properties of that shape. For
example, when a Rectangle is asked if it HasARightAngle, no calculation is necessary — the answer
is guaranteed to be true.

e The inheritance diagram of these shapes includes multiple inheritance. Furthermore, the multiple
inheritance is in the form of the Diamond Problem. That is, Class D multiply inherits from Class B
and Class C, and Class B and Class C each inherit from Class A. Thus when an object of type D is
created, in turn instances of B and C are created, and unfortunately both will try to make their own
instance of A. If two instances of A were allowed, attempts to refer to member variables or member
functions of A would be ambiguous. To solve the problem, we should specify that B virtually inherits
from A and C virtually inherits from A. Furthermore, when we construct an instance of D, in addition
to specifying how to call constructors for B and C, we also explicitly specify the constructor for A.
Note how in the single inheritance example on the right, G only explicitly calls a constructor for F.

class A {
public:

A AQO {3 E class E {
}; A public:
class B : virtual public A { EO {3
public: };

BO : A0 {} class F : public E {
}; public:
B (: class C : virtual public A { F FO : EO {3

public: A };
cO : A0 {} class G : public F {
}; public:
class D : public B, public C { GO : FO {3
public: };
D

DO : AQ, BO, cO {3 G
};

Submission

Do all of your work in a new folder named hw10 inside of your homeworks directory. You must do this
assignment on your own, as described in the “Academic Integrity for Homework” handout.
If you did discuss the problem or error messages, etc. with anyone, please list their names
in your README. txt file. When you are finished please zip up your folder exactly as instructed for the
previous assignments and submit it through the course webpage.



