CSCI-1200 Data Structures — Fall 2010
Lab 13 — Hash Tables

In this lab, you will experiment with our hash table implementation of a set. The key differences between
the ds_set class (based on a binary search tree) and the ds_hashset class (based on a hash table, of
course), are the performance of insert/find/erase: O(log n) vs. O(1), and the order that the elements are
traversed using iterators: the set was in order, while the hashset is in no apparent order. The notes from
Lecture 21 will be helpful for today’s lab.

Start by downloading the files, and then turn off all network connections:

http://www.cs.rpi.edu/academics/courses/fall10/ds/labs/13_hash_tables/ds_hashset.h
http://www.cs.rpi.edu/academics/courses/falll0/ds/labs/13_hash_tables/test_ds_hashset.cpp

The code provided in these files is straightforward. test_ds_hashset.cpp is a driver and test program,
while ds_hashset.h is an incomplete implementation of the class.

Checkpoint 1

For the first part of this checkpoint, implement and test the insert function for the hashset. The insert
function must first determine in which bin the new element belongs (using the hash function), and then
insert the element into that bin but only if it isn’t there already. The insert function returns a pair containing
an iterator pointing at the element, and a bool indicating whether it was successfully inserted (true) or
already there (false).

For the second part of this checkpoint, experiment with the hash function. In the provided code we include
the implementation of a good hash function for strings. Are there any collisions for the small example?
Now write some alternative hash functions. First, create a trivial hash function that is guaranteed to have
many, many collisions. Then, create a hash function that is not terrible, but will unfortunately always place
anagrams (words with the same letters, but rearranged) in the same bin. Test your alternate functions
and be prepared to show the results to your TA.

To complete this checkpoint: Show a TA your debugged implementation of insert and your experi-
mentation with alternative hash functions.

Checkpoint 2

Next, implement and test the begin function, which initializes the iteration through a hashset. Confirm
that the elements in the set are visited in the same order they appear with the print function (which we
have implemented for debugging purposes only).

Finally, implement and test the resize function. This function is automatically called from the insert
function when the set gets “too full”. This function should make a new top level vector structure of the
requested size and copy all the data from the old structure to the new structure. Note that the elements
will likely be shuffled around from the old structure to the new structure.

To complete this checkpoint: Show a TA these additions and the test output.



