CSCI-1200 Data Structures — Fall 2010
Lecture 18 — Trees, Part 111

Review from Lecture 17

e Implementing ds_set operations: insert, destroy, printing, erase

Today’s Lecture
e Adding parent pointers, insert & erase w/ parent pointers
e Increment and decrement operations on iterators

e Limitations of our implementation, brief intro to red-black trees

18.1 Tree Height, Longest & Shortest Paths

e (From last lecture... ) The height of a node in a tree is the length of the longest path down the tree from that
node to a leaf node. The height of a leaf is therefore 0. We will think of the height of a null pointer as -1.

e The height of the tree is the height of the root node, and therefore if the tree is empty the height will be -1.

e An exercise from last lecture was to write a simple recursive algorithm to calculate the height of a tree. Let’s
write it now. What is the running time of this algorithm?

e Now let’s write a function to calculate the shortest path to a NULL child pointer. What is the running time
of this algorithm? Can we do better?

18.2 Tree Iterators (review and with more detail)

e The increment operator should change the iterator’s pointer to point to the next TreeNode in an in-order
traversal — the “in-order successor” — while the decrement operator should change the iterator’s pointer to
point to the “in-order predecessor”.

e Unlike the situation with lists and vectors, these predecessors and successors are not necessarily “nearby”
(either in physical memory or by following a link) in the tree, as examples we draw in class will illustrate.

e There are two common solution approaches:

— Each iterator maintains a stack of pointers representing the path down the tree to the current node.
— Each node stores a parent pointer. Only the root node has a null parent pointer.
e Let’s go with the parent pointer method. Most of the changes are simple, but we need to revise the implemen-

tation of several member functions, including insert and erase, to correctly adjust parent pointers. See the
attached source code.



18.3 Erase (now with parent pointers) mouse

o (Review from last lecture... ) First we need to find the node to remove. A
Once it is found, the actual removal is easy if the node has no children
or only one child. It is harder if there are two children:

— Find the node with the greatest value in the left subtree or the
node with the smallest value in the right subtree.

— The value in this node may be safely moved into the current node
because of the tree ordering. -

— Then we recursively apply erase to remove that node — which is

guaranteed to have at most one child.
snake

18.4 Exercise

Rewrite erase, now with parent pointers.

18.5 Exercise

e Although iterator increment looks expensive in the worst case for a single application of operator++, it is fairly
easy to show that iterating through a tree storing n nodes requires O(n) operations overall.

e Implement an algorithm for finding the in-order successor of a node. Use this to implement the iterator
increment function.

18.6 Limitations of Our BST Implementation
e The efficiency of the main insert, find and erase algorithms depends on the height of the tree.

e The best-case and average-case heights of a binary search tree storing n nodes are both O(logn). The worst-
case, which often can happen in practice, is O(n).

e Developing more sophisticated algorithms to avoid the worst-case behavior will be covered in Introduction to
Algorithms. One elegant extension to binary search tree is described below...

18.7 Red-Black Trees

In addition to the binary search tree properties, the
following red-black tree properties are maintained
throughout all modifications to the data structure:

1. Each node is either red or black.
2. The NULL child pointers are black. 12

3. Both children of every red node are black.
Thus, the parent of a red node must also be black.

4. All paths from a particular node to a NULL child pointer
: 14
contain the same number of black nodes. ; ;

What tree does our ds_set implementation produce if we insert the numbers 1-14 in order?
The tree at the right is the result using a red-black tree. Notice how the tree is still quite balanced.
Visit this link for an animation of the sequential insertion and rebalancing:

http://babbage.clarku.edu/~achou/cs160fall103/examples/bst_animation/RedBlackTree-Example.html


http://babbage.clarku.edu/~achou/cs160fall03/examples/bst_animation/RedBlackTree-Example.html

/- e --- —mmmee-
// TREE NODE CLASS
template <class T>
class TreeNode {
public:
TreeNode() : left(NULL), right(NULL), parent(NULL) {}
TreeNode(const T& init) : value(init), left(NULL), right(NULL), parent(NULL) {}
T value;
TreeNodex left;
TreeNode* right;
TreeNode* parent; // to allow implementation of iterator increment & decrement

};

/- -—= -== -—= -== -
// TREE NODE ITERATOR CLASS
template <class T>
class tree_iterator {
public:
tree_iterator() : ptr_(NULL) {}
tree_iterator(TreeNode<T>* p) : ptr_(p) {}
tree_iterator(const tree_iterator& old) : ptr_(old.ptr_) {}
“tree_iterator() {}
tree_iterator& operator=(const tree_iterator& old) { ptr_ = old.ptr_; return *this; }
// operator* gives constant access to the value at the pointer
const T& operator*() const { return ptr_->value; }
// comparions operators are straightforward
friend bool operator== (const tree_iterator& 1lft, const tree_iterator& rgt)
{ return 1ft.ptr_ == rgt.ptr_; }
friend bool operator!= (const tree_iterator& 1ft, const tree_iterator& rgt)
{ return 1ft.ptr_ != rgt.ptr_; }
// increment & decrement operators
tree_iterator<T> & operator++() { /* implemented in Lecture 18 */

return *this;

}

tree_iterator<T> operator++(int) { tree_iterator<T> temp(*this); ++(*this); return temp; 1}

tree_iterator<T> & operator--() { /* implemented in Lab 11 */ }

tree_iterator<T> operator--(int) { tree_iterator<T> temp(*this); --(*this); return temp; 1}
private:

// representation

TreeNode<T>* ptr_;
};

// - - - - -
// DS_ SET CLASS
template <class T>
class ds_set {
public:
ds_set() : root_(NULL), size_(0) {3}
ds_set(const ds_set<T>& o0ld) : size_(old.size_) { root_ = this->copy_tree(old.root_,NULL); }
“ds_set() { this->destroy_tree(root_); root_ = NULL; }
ds_set& operator=(const ds_set<T>& old) { /* implementation omitted */ }

typedef tree_iterator<T> iterator;
int size() const { return size_; }
bool operator==(const ds_set<T>& old) const { return (old.root_ == this->root_); }

iterator find(const T& key_value) { return find(key_value, root_); }

std::pair< iterator, bool > insert(T const& key_value) { return insert(key_value, root_, NULL); }

int erase(T const& key_value) { return erase(key_value, root_); }



// MAKE SURE THE DATA STRUCTURE’S CHILD & PARENT POINTERS ARE CONSISTENT
bool sanity_check() const {
if (root_ == NULL) return true;
if (root_->parent != NULL) return false;
return sanity_check(root_);
}
iterator begin() const {
if (!root_) return iterator (NULL);
TreeNode<T>* p = root_;
while (p->left) p = p->left;
return iterator(p);
}

iterator end() const { return iterator(NULL); }

private:
// REPRESENTATION
TreeNode<T>* root_;
int size_;
// now with parent pointers, need to pass the current node as the parent pointer for the child
TreeNode<T>* copy_tree(TreeNode<T>* old_root, TreeNode<T>* the_parent) {
if (old_root == NULL) return NULL;
TreeNode<T> *answer = new TreeNode<T>();
answer->value = old_root->value;
answer->left = copy_tree(old_root->left,answer);
answer->right = copy_tree(old_root->right,answer);
answer->parent = the_parent; // link up the parent
return answer;
}
void destroy_tree(TreeNode<T>* p) { /* implementation omitted */ }
iterator find(const T& key_value, TreeNode<T>* p) { /* implementation omitted */ }
// now with parent pointers, need to pass the current node as the parent pointer for the child
std::pair<iterator,bool> insert(const T& key_value, TreeNode<T>*& p, TreeNode<T>* the_parent) {
if (Ip) {
p = new TreeNode<T>(key_value) ;
p->parent = the_parent; // link up the parent
this->size_++;
return std::pair<iterator,bool>(iterator(p), true);
}
else if (key_value < p->value)
return insert(key_value, p->left, p);
else if (key_value > p->value)
return insert(key_value, p->right, p);
else
return std::pair<iterator,bool>(iterator(p), false);

}

int erase(T const& key_value, TreeNode<T>* &p) { /* Implemented in Lecture 18 */

}

bool sanity_check(TreeNode<T>* p) const {
if (p == NULL) return true;
if (p—>left != NULL && p->left->parent != p) { return false; }
if (p—->right != NULL && p->right->parent != p) { return false; }
return sanity_check(p->left) && sanity_check(p->right);



	Tree Height, Longest & Shortest Paths
	Tree Iterators (review and with more detail)
	Erase (now with parent pointers)
	Exercise
	Exercise
	Limitations of Our BST Implementation
	Red-Black Trees

