Review from Lecture 21

- Operators as non-member functions, as member functions, and as friend functions.
- Queues and Stacks, What’s a Priority Queue?
- A Priority Queue as a Heap, `percolate_up` and `percolate_down`
- A Heap as a Tree (with nodes & pointers)

Today’s Class

- A Heap as a Vector
- Building a Heap
- Heap Sort
- Merging heaps are the motivation for leftist heaps
- Mathematical background & Basic algorithms
- Homework 6 Contest Results!

20.1 Vector Implementation

- In the vector implementation, the tree is never explicitly constructed. Instead the heap is stored as a vector, and the child and parent “pointers” can be implicitly calculated.
- To do this, number the nodes in the tree starting with 0 first by level (top to bottom) and then scanning across each row (left to right). These are the vector indices. Place the values in a vector in this order.
- As a result, for each subscript, i,
 - The parent, if it exists, is at location $\lfloor (i - 1)/2 \rfloor$.
 - The left child, if it exists, is at location $2i + 1$.
 - The right child, if it exists, is at location $2i + 2$.
- For a binary heap containing n values, the last leaf is at location $n - 1$ in the vector and the last internal (non-leaf) node is at location $\lfloor (n - 1)/2 \rfloor$.
- The standard library (STL) `priority_queue` is implemented as a binary heap.

20.2 Exercise

Draw a binary heap with values: 52 13 48 7 32 40 18 25 4, first as a tree of nodes & pointers, then in vector representation.
20.3 Exercise
Show the vector contents for the binary heap after each delete min operation.

```
push 8, push 12, push 7, push 5, push 17, push 1,
pop,
push 6, push 22, push 14, push 9,
pop,
pop,
```

20.4 Building A Heap

- In order to build a heap from a vector of values, for each index from \((n - 1)/2\) down to 0, run percolate_down.
- It can be shown that this requires at most \(O(n)\) operations.
- If instead, we ran percolate_up from each index starting at \(n - 1\) down to 0, we would incur a \(O(n \log n)\) cost.

20.5 Heap Sort

- Here is a simple algorithm to sort a vector of values: build a heap and then run \(n\) consecutive pop operations, storing each “popped” value in a new vector.
- It is straightforward to show that this requires \(O(n \log n)\) time.
- This can also be done “in place” so that a separate vector is not needed.

20.6 Summary

- Priority queues are conceptually similar to queues, but the order in which values / entries are removed (“popped”) depends on a priority.
- Heaps, which are conceptually a binary tree but are implemented in a vector, are the data structure of choice for a priority queue.
- In some applications, the priority of an entry may change while the entry is in the priority queue. This requires that there be “hooks” (usually in the form of indices) into the internal structure of the priority queue. This is an implementation detail we have not discussed.
20.7 Leftist Heaps — Overview

- Our goal is to be able to merge two heaps in $O(\log n)$ time, where n is the number of values stored in the larger of the two heaps.
 - Merging two binary heaps (where every row but possibly the last is full) requires $O(n)$ time
- Leftist heaps are binary trees where we deliberately attempt to eliminate any balance.
 - Why? Well, consider the most unbalanced tree structure possible. If the data also maintains the heap property, we essentially have a sorted linked list.
- Leftists heaps are implemented explicitly as trees (rather than vectors).

20.8 Leftist Heaps — Mathematical Background

- **Definition**: The null path length (NPL) of a tree node is the length of the shortest path to a node with 0 children or 1 child. The NPL of a leaf is 0. The NPL of a NULL pointer is -1.
- **Definition**: A leftist tree is a binary tree where at each node the null path length of the left child is greater than or equal to the null path length of the right child.
- **Definition**: The right path of a node (e.g. the root) is obtained by following right children until a NULL child is reached.
 - In a leftist tree, the right path of a node is at least as short as any other path to a NULL child.
- **Theorem**: A leftist tree with $r > 0$ nodes on its right path has at least $2^r - 1$ nodes.
 - This can be proven by induction on r.
- **Corollary**: A leftist tree with n nodes has a right path length of at most $\lfloor \log(n + 1) \rfloor = O(\log n)$ nodes.
- **Definition**: A leftist heap is a leftist tree where the value stored at any node is less than or equal to the value stored at either of its children.

20.9 Leftist Heap Operations

- The insert and delete_min operations will depend on the merge operation.
- Here is the fundamental idea behind the merge operation. Given two leftist heaps, with h_1 and h_2 pointers to their root nodes, and suppose $h_1->value \leq h_2->value$. Recursively merge $h_1->right$ with h_2, making the resulting heap $h_1->right$.
- When the leftist property is violated at a tree node involved in the merge, the left and right children of this node are swapped. This is enough to guarantee the leftist property of the resulting tree.
- Merge requires $O(\log n + \log m)$ time, where m and n are the numbers of nodes stored in the two heaps, because it works on the right path at all times.
20.10 Merge Code

template <class T>
class LeftNode {
public:
 LeftNode() : npl(0), left(0), right(0) {}
 LeftNode(const T& init) : value(init), npl(0), left(0), right(0) {}
 T value;
 int npl; // the null-path length
 LeftNode* left;
 LeftNode* right;
};

Here are the two functions used to implement leftist heap merge operations. Function merge is the driver. Function merge1 does most of the work. These functions call each other recursively.

template <class Etype>
LeftNode<Etype>* merge(LeftNode<Etype> *H1, LeftNode<Etype> *H2) {
 if (!h1)
 return h2;
 else if (!h2)
 return h1;
 else if (h2->value > h1->value)
 return merge1(h1, h2);
 else
 return merge1(h2, h1);
}

template <class Etype>
LeftNode<Etype>* merge1(LeftNode<Etype> *h1, LeftNode<Etype> *h2) {
 if (h1->left == NULL)
 h1->left = h2;
 else {
 h1->right = merge(h1->right, h2);
 if(h1->left->npl < h1->right->npl)
 swap(h1->left, h1->right);
 h1->npl = h1->right->npl + 1;
 }
 return h1;
}

20.11 Exercises

1. Explain how merge can be used to implement insert and delete_min, and then write code to do so.

2. Show the state of a leftist heap at the end of:

 insert 1, 2, 3, 4, 5, 6
 delete_min
 insert 7, 8
 delete_min
 delete_min