Review from Lecture 19

- Operators as non-member functions, as member functions, and as friend functions.
- Queues and Stacks, What’s a Priority Queue?
- Intro to Binary Heaps

Today’s Class

- A Priority Queue as a Heap, *percolate_up* and *percolate_down*
- A Heap as a Vector, Building a Heap, Heap Sort
- Merging heaps are the motivation for leftist heaps
- Mathematical background & Basic algorithms

20.1 Implementing Pop (a.k.a. Delete Min)

- The top (root) of the tree is removed.
- It is replaced by the value stored in the last leaf node.
 - This has echoes of the erase function in binary search trees.
 - We have not yet discussed how to find the last leaf.
- The last leaf node is removed.
- The (following) *percolate_down* function is then run to restore the heap property. This function is written here in terms of tree nodes with child pointers (and the priority stored as a value), but later it will be written in terms of vector subscripts.

```cpp
percolate_down(TreeNode<T> * p) {
    while (p->left) {
        TreeNode<T>* child;
        // Choose the child to compare against
        if (p->right && p->right->value < p->left->value)
            child = p->right;
        else
            child = p->left;
        if (child->value < p->value) {
            swap(child, p); // value and other non-pointer member vars
            p = child;
        }
        else
            break;
    }
}
```

20.2 Push / Insert

- To add a value to the heap, a new last leaf node in the tree is created and then the following *percolate_up* function is run. It assumes each node has a pointer to its parent.

```cpp
percolate_up(TreeNode<T> * p) {
    while (p->parent) {
        if (p->value < p->parent->value) {
            swap(p, parent); // value and other non-pointer member vars
            p = p->parent;
        } else
            break;
    }
}
```
20.3 Analysis

- Both `percolate_down` and `percolate_up` are $O(\log n)$ in the worst-case. Why?
- But, `percolate_up` (and as a result `push`) can be $O(1)$ in the average case. Why? (The full answer is beyond the scope of this course.)

20.4 Exercise

Suppose the following operations are applied to an initially empty binary heap of integers. Show the resulting heap after each `delete_min` operation. (Remember, the tree must be complete!)

```
push 5, push 3, push 8, push 10, push 1, push 6,  
pop,  
push 14, push 2, push 4, push 7,  
pop,  
pop,  
pop
```

20.5 Vector Implementation

- In the vector implementation, the tree is never explicitly constructed. Instead the heap is stored as a vector, and the child and parent “pointers” can be implicitly calculated.
- To do this, number the nodes in the tree starting with 0 first by level (top to bottom) and then scanning across each row (left to right). These are the vector indices. Place the values in a vector in this order.
- As a result, for each subscript, i,
 - The parent, if it exists, is at location $\lfloor (i - 1)/2 \rfloor$.
 - The left child, if it exists, is at location $2i + 1$.
 - The right child, if it exists, is at location $2i + 2$.
- For a binary heap containing n values, the last leaf is at location $n - 1$ in the vector and the last internal (non-leaf) node is at location $\lfloor (n - 1)/2 \rfloor$.
- The standard library (STL) `priority_queue` is implemented as a binary heap.

20.6 Exercise

Draw a binary heap with values: 52 13 48 7 32 40 18 25 4, first as a tree of nodes & pointers, then in vector representation.

20.7 Exercise

Show the vector contents for the binary heap after each `delete_min` operation.

```
push 8, push 12, push 7, push 5, push 17, push 1,  
pop,  
push 6, push 22, push 14, push 9,  
pop,  
pop,
```
20.8 Building A Heap
- In order to build a heap from a vector of values, for each index from \((n-1)/2 \) down to 0, run percolate_down.
- It can be shown that this requires at most \(O(n) \) operations.
- If instead, we ran percolate_up from each index starting at n-1 down to 0, we would incur a \(O(n \log n) \) cost.

20.9 Heap Sort
- Here is a simple algorithm to sort a vector of values: build a heap and then run \(n \) consecutive pop operations, storing each “popped” value in a new vector.
- It is straightforward to show that this requires \(O(n \log n) \) time.
- This can also be done “in place” so that a separate vector is not needed.

20.10 Summary
- Priority queues are conceptually similar to queues, but the order in which values / entries are removed (“popped”) depends on a priority.
- Heaps, which are conceptually a binary tree but are implemented in a vector, are the data structure of choice for a priority queue.
- In some applications, the priority of an entry may change while the entry is in the priority queue. This requires that there be “hooks” (usually in the form of indices) into the internal structure of the priority queue. This is an implementation detail we have not discussed.

20.11 Leftist Heaps — Overview
- Our goal is to be able to merge two heaps in \(O(\log n) \) time, where \(n \) is the number of values stored in the larger of the two heaps.
 - Merging two binary heaps (where every row but possibly the last is full) requires \(O(n) \) time
- Leftist heaps are binary trees where we deliberately attempt to eliminate any balance.
 - Why? Well, consider the most unbalanced tree structure possible. If the data also maintains the heap property, we essentially have a sorted linked list.
- Leftists heaps are implemented explicitly as trees (rather than vectors).

20.12 Leftist Heaps — Mathematical Background
- **Definition:** The null path length (NPL) of a tree node is the length of the shortest path to a node with 0 children or 1 child. The NPL of a leaf is 0. The NPL of a NULL pointer is -1.
- **Definition:** A leftist tree is a binary tree where at each node the null path length of the left child is greater than or equal to the null path length of the right child.
- **Definition:** The right path of a node (e.g. the root) is obtained by following right children until a NULL child is reached.
 - In a leftist tree, the right path of a node is at least as short as any other path to a NULL child.
- **Theorem:** A leftist tree with \(r > 0 \) nodes on its right path has at least \(2^r - 1 \) nodes.
 - This can be proven by induction on \(r \).
- **Corollary:** A leftist tree with \(n \) nodes has a right path length of at most \(\lfloor \log(n + 1) \rfloor = O(\log n) \) nodes.
- **Definition:** A leftist heap is a leftist tree where the value stored at any node is less than or equal to the value stored at either of its children.
20.13 Leftist Heap Operations

- The `insert` and `delete_min` operations will depend on the `merge` operation.
- Here is the fundamental idea behind the merge operation. Given two leftist heaps, with \(h_1 \) and \(h_2 \) pointers to their root nodes, and suppose \(h_1->value \leq h_2->value \). Recursively merge \(h_1->right \) with \(h_2 \), making the resulting heap \(h_1->right \).
- When the leftist property is violated at a tree node involved in the merge, the left and right children of this node are swapped. This is enough to guarantee the leftist property of the resulting tree.
- Merge requires \(O(\log n + \log m) \) time, where \(m \) and \(n \) are the numbers of nodes stored in the two heaps, because it works on the right path at all times.

20.14 Merge Code

```cpp
template <class T>
class LeftNode {
public:
  LeftNode() : npl(0), left(0), right(0) {}
  LeftNode(const T& init) : value(init), npl(0), left(0), right(0) {}
  T value;
  int npl; // the null-path length
  LeftNode* left;
  LeftNode* right;
};
```

Here are the two functions used to implement leftist heap merge operations. Function `merge` is the driver. Function `merge1` does most of the work. These functions call each other recursively.

```cpp
template <class Etype>
LeftNode<Etype>* merge(LeftNode<Etype> *H1, LeftNode<Etype> *H2) {
  if (!H1)
    return H2;
  else if (!H2)
    return H1;
  else if (H2->value > H1->value)
    return merge1(H1, H2);
  else
    return merge1(H2, H1);
}
```

```cpp
template <class Etype>
LeftNode<Etype>* merge1(LeftNode<Etype> *h1, LeftNode<Etype> *h2) {
  if (h1->left == NULL)
    h1->left = h2;
  else {
    h1->right = merge(h1->right, h2);
    if(h1->left->npl < h1->right->npl)
      swap(h1->left, h1->right);
    h1->npl = h1->right->npl + 1;
  }
  return h1;
}
```

20.15 Exercises

1. Explain how `merge` can be used to implement `insert` and `delete_min`, and then write code to do so.

2. Show the state of a leftist heap at the end of:

```plaintext
insert 1, 2, 3, 4, 5, 6
delete_min
insert
delete_min
insert 7, 8
delete_min
```