CSCI-1200 Data Structures — Fall 2014
Homework 10 — Multiple Inheritance & Exceptions

For this assignment you will build a class inheritance structure to match the hierarchy of members of the plant
and animal kingdoms. Your finished program will read information about organisms from a file, determine
each organism’s type from a collection of facts, and then output various categorizations of the organisms
to another file. For the final part of the homework we will use a somewhat quirky method to deduce the
organism type. We will pass the collection of facts to each specialized organism constructor in turn, and if
the constructor doesn’t fail, then we will know we have chosen the correct organism type. Note: The only
way for a constructor to fail is to throw an exception. Lectures 23 & 24 will be helpful for this homework.

Organism Hierarchy

You are required to recognize 11 different specific organisms: Bat, Bear, Cardinal, Penguin, Platypus,
Redwood, Rhinoceros, Tiger, Tortoise, Trout, and VenusFlyTrap. In addition, you will also define 10
intermediate classes: Animal, Bird, Endothermic, Ectothermic, Fish, LaysEggs, Mammal, Organism, Plant,
and Reptile. Note that a particular organism may be correctly labeled by more than one of these names.
For example, a Tiger is also a Mammal. Important Note: Animal and plant kingdom geeks know that there
are exceptions to some of the relationships in the hierarchy and may argue that facts or terms used in the
input & output files are overly simplified. For the main homework, please follow these examples exactly.

For the first part of the homework you will draw a detailed diagram of the class hierarchy. The diagram must
include all 21 different organism labels. You should draw arrows indicating all of the inheritance relationships.
To receive full credit, the diagram should be legible, neat, and well organized, with no messy scribbles or
cross outs, have a consistent (up or down) orientation to the edges, and contain few or no arrow crossings.
Once you have worked out the relationships and structure, you will most likely need to redraw this figure (at
least once), to create the final layout. You do not need to include all of the member variables and member
functions in this diagram, but you should start thinking about where you will store and initialize common
data and the appropriate place to define key functions to reduce redundant storage and copy-pasting function
implementation. You should label the virtual inheritance paths (described on the next page).

Since many of you will draw this using pen/pencil & paper, this part of the homework is due in hardcopy to
your graduate TA in your normal lab section on Wednesday, December 3rd. Even if you choose to
draw the diagram electronically, you are still required to print it out and submit the paper in your normal
lab section. You may not use late days for this portion of the assignment.

Provided Code

We have provided code that implements all of the I/O for this homework assignment. The executable expects
two command line arguments: the input and output files. The input file contains a collection of facts for
each organism. Each organism begins with the keyword “organism”. A fact is a pair of two strings: an
organism property and the value of that property. One property of every organism instance is its name. Some
of the properties are listed multiple times with different values. For example a Bear is known to eat bugs,
plants, fish, and deer. The fact list for a specific organism instance is not exhaustive, but you may assume
the list is detailed enough to uniquely describe a single specific organism type from our tiny subset of the
world’s creatures. The program’s output presents the membership of the input in the 21 organism classes
(# of members in each class and the names of the members in that class). The output also lists data on
the organism’s dietary habits (carnivore, herbivore, or omnivore) and environment (air, land, and/or water).
Note: These properties are defined for the organism class and may not be explicitly included as a fact in the
input file for that organism instance (because the facts listed for a specific individual will be incomplete).

Important Note: For the base homework, you should not need to modify the provided code. We will be
compiling and running your program twice, once with the provided main. cpp and once with your main.cpp
that includes your creative extensions (for extra credit).



Class Implementation

Your second task is to implement the 21 organism classes. Start with the input_with_types.txt file, which
explicitly includes the type as a fact for each organism. Your solution should contain at least one new .h
file and at least one new .cpp file. You should have a file named organism.h that includes all of the class
declarations or if you use multiple .h files, #include all of the other .h files within organism.h. The
constructor for each class takes a single argument: the std: :map of the facts about that instance. We do not
need to define the default constructor, the copy constructor, or the destructor. If you get errors indicating
the default constructor is not defined, you probably forgot to explicitly pass this data from the derived class
to one or more parent classes. In organizing your code for this assignment, avoid unnecessarily duplicating
code. For example, don’t implement the livesInWater function (or variable initialization) in every class.
Instead, when possible, allow the derived class to rely on the implementation of that function in a parent
class. Similarly, don’t re-initialize a variable in the derived class if the parent class can initialize it correctly.

The inheritance diagram of these organisms includes multiple inheritance. Furthermore, the multiple inher-
itance is in the form of the Diamond Problem. That is, Class D multiply inherits from Class B and Class
C, and Class B and Class C each inherit from Class A. Thus when an object of type D is created, in turn
instances of B and C are created, and unfortunately both will try to make their own instance of A. If two
instances of A were allowed, attempts to refer to member variables or member functions of A would be
ambiguous. To solve the problem, we should specify that B wvirtually inherits from A and that C wirtually
inherits from A. Furthermore, when we construct an instance of D, in addition to specifying how to call
constructors for B and C, we also explicitly specify the constructor for A. Note how in the single inheritance
example on the right with no virtual inheritance, G only explicitly calls a constructor for F.

class A {
public:
A A(int x) {} L
. . }; A class E {
virtual Vll"le(ll class B : virtual public A { public:
public: E(int x) {}
B(int x) : A(x) {} 1
}; class F : public E {
B C class C : virtual public A { F public:
public: Yy F(int x) : E(x) {}
C(int x) : A(x) {} };
}; class G : public F {
class D : public B, public C { public:
public: G(int x) : F(x) {}
D D(int x) : AGO, B, C(x) { G ¥
};

For the final task of the assignment you will work with the input_without_types.txt file and your code must
deduce the type of each organism. The provided code guides you in this implementation. The collection
of facts is presented to each constructor (generally ordered from more specific organisms to less specific
intermediate types). If a fact contradicts what is known to be true for that specific organism type, the
constructor should throw an exception. For example, the program will try to create a Tiger with the data
first, and only if that constructor fails (throws an exception) will the program try to create a Mammal.

Submission Details & Creative Extensions for Extra Credit

For extra credit you may expand the class hierarchy in an interesting and/or creative manner. Describe
your extensions in your README.txt file and include sample input and output files that demonstrate your
extensions. Your code should still work with the provided input.

You must do the implementation of this assignment on your own, as described in the “Academic
Integrity for Homework” handout. If you did discuss the assignment or error messages, etc.
with anyone, please list their names in your README. txt file.



