
CSCI-1200 Data Structures — Fall 2014

Lecture 21 – Operators & Friends and Priority Queues I

Review from Lecture 20

• A hash table is implemented with a array at the top level. Each key is mapped to a slot in the array by a hash
function, a simple function of one argument (the key) which returns an index (a bucket or slot in the array).

• CallerID Performance: Vectors vs. Binary Search Trees vs. Hash Tables

• Hash Table Collision Resolution

• Using a Hash Table to Implement a set.

– Function objects, Iterators, Fundamental operations: find, insert and erase.

Today’s Lecture

• Finish last lecture!

– Operators as non-member functions, as member functions, and as friend functions.

– (grab your notes from last lecture)

• STL Queues and Stacks

• What’s a Priority Queue?

• A Priority Queue as a Heap

• percolate_up and percolate_down

21.1 Additional STL Container Classes: Stacks and Queues

• We’ve studied STL vectors, lists, maps, and sets. These data structures provide a wide range of flexibility in
terms of operations. One way to obtain computational efficiency is to consider a simplified set of operations or
functionality.

• For example, with a hash table we give up the notion of a sorted table and gain in find, insert, & erase efficiency.

• 2 additional examples are:

– Stacks allow access, insertion and deletion from only one end called the top

∗ There is no access to values in the middle of a stack.

∗ Stacks may be implemented efficiently in terms of vectors and lists, although vectors are preferable.

∗ All stack operations are O(1)

– Queues allow insertion at one end, called the back and removal from the other end, called the front

∗ There is no access to values in the middle of a queue.

∗ Queues may be implemented efficiently in terms of a list. Using vectors for queues is also possible,
but requires more work to get right.

∗ All queue operations are O(1)

21.2 What’s a Priority Queue?

• Priority queues are used in prioritizing operations. Examples include a personal “to do” list, jobs on a shop
floor, packet routing in a network, scheduling in an operating system, or events in a simulation.

• Among the data structures we have studied, their interface is most similar to a queue, including the idea of a
front or top and a tail or a back.

• Each item is stored in a priority queue using an associated “priority” and therefore, the top item is the one
with the lowest value of the priority score. The tail or back is never accessed through the public interface to
a priority queue.

• The main operations are insert or push, and pop (or delete_min).



21.3 Some Data Structure Options for Implementing a Priority Queue

• Vector or list, either sorted or unsorted

– At least one of the operations, push or pop, will cost linear time, at least if we think of the container as a
linear structure.

• Binary search trees

– If we use the priority as a key, then we can use a combination of finding the minimum key and erase to
implement pop. An ordinary binary-search-tree insert may be used to implement push.

– This costs logarithmic time in the average case (and in the worst case as well if balancing is used).

• The latter is the better solution, but we would like to improve upon it — for example, it might be more natural
if the minimum priority value were stored at the root.

– We will achieve this with binary heap, giving up the complete ordering imposed in the binary search tree.

21.4 Definition: Binary Heaps

• A binary heap is a complete binary tree such that at each internal node, p, the value stored is less than the
value stored at either of p’s children.

– A complete binary tree is one that is completely filled, except perhaps at the lowest level, and at the
lowest level all leaf nodes are as far to the left as possible.

• Binary heaps will be drawn as binary trees, but implemented using vectors!

• Alternatively, the heap could be organized such that the value stored at each internal node is greater than the
values at its children.

21.5 Exercise: Drawing Binary Heaps

Draw two different binary heaps with these values: 52 13 48 7 32 40 18 25 4

21.6 Implementing Pop (a.k.a. Delete Min)

• The top (root) of the tree is removed.

• It is replaced by the value stored in the last leaf node. This has echoes of the erase function in binary search
trees. NOTE: We have not yet discussed how to find the last leaf.

• The last leaf node is removed.

• The (following) percolate_down function is then run to restore the heap property. This function is written
here in terms of tree nodes with child pointers (and the priority stored as a value), but later it will be written
in terms of vector subscripts.

percolate_down(TreeNode<T> * p) {

while (p->left) {

TreeNode<T>* child;

// Choose the child to compare against

if (p->right && p->right->value < p->left->value)

child = p->right;

else

child = p->left;

if (child->value < p->value) {

swap(child, p); // value and other non-pointer member vars

p = child;

}

else

break;

}

}

2



21.7 Push / Insert

• To add a value to the heap, a new last leaf node in the tree is created and then the following percolate_up

function is run. It assumes each node has a pointer to its parent.

percolate_up(TreeNode<T> * p) {

while (p->parent)

if (p->value < p->parent->value) {

swap(p, parent); // value and other non-pointer member vars

p = p->parent;

}

else

break;

}

21.8 Analysis

• Both percolate_down and percolate_up are O(log n) in the worst-case. Why?

• But, percolate_up (and as a result push) can be O(1) in the average case. Why?

21.9 Exercise

Suppose the following operations are applied to an initially empty binary heap of integers. Show the resulting heap
after each delete_min operation. (Remember, the tree must be complete!)

push 5, push 3, push 8, push 10, push 1, push 6,

pop,

push 14, push 2, push 4, push 7,

pop,

pop,

pop

3


	Additional STL Container Classes: Stacks and Queues
	What's a Priority Queue?
	Some Data Structure Options for Implementing a Priority Queue
	Definition: Binary Heaps
	Exercise: Drawing Binary Heaps
	Implementing Pop (a.k.a. Delete Min)
	Push / Insert
	Analysis
	Exercise

