Logic Programming (PLP 11)

Prolog Imperative Control Flow:
Backtracking, Cut, Fail, Not

Carlos Varela
Rennselaer Polytechnic Institute

September 2, 2014

C. Varela

Backtracking

o Forward chaining goes from axioms forward into goals.

* Backward chaining starts from goals and works backwards
to prove them with existing axioms.

C. Varela 2

Backtracking example

rainy (seattle).

rainy (rochester) .

cold (rochester) .

snowy (X) :- rainy(X), cold(X).

snowy (C)

C= X success

snowy (X)

cold (seattle)
fails;

//// rainy (X) cold (X

X = seattle X hest
= rochester

ai eattle) rainy (roches®ter)

C. Varela 3

Imperative Control Flow

* Programmer has explicit control on backtracking process.

Cut (!)

« As a goal it succeeds, but with a side effect:

— Commits interpreter to choices made since unifying parent goal
with left-hand side of current rule.

C. Varela

Cut (!) Example

raliny (seattle).

rainy (rochester) .

cold (rochester) .

snowy (X) :—- rainy(X), !, cold(X).

C. Varela

Cut (!) Example

rainy (seattle).
rainy (rochester) .
cold(rochester) .

snowy (X) :- rainy(X), !, cold(X).
coLd (seattle)
=X backtracking
snowy (X) to rainy (X) .

GOAL FAILS.
% |\

//// rainy (X) cold (X)

X = seattle
&’R\

rainy (seattle) rainy (rochester)

cold (rochester)

C. Varela 6

Cut (!) Example 2

raliny (seattle).

rainy (rochester) .

cold (rochester) .

snowy (X) :—- rainy(X), !, cold(X).
snowy (troy) .

C. Varela

Cut (!) Example 2

rainy (seattle). C = troy FAILS

rainy (rochester) . | | | snowy (X) is committed

(X) iny(X), ! 14 (to bindings (X =
snowy (X) :—- rainy(X), !, co
snowy (troy) . SNoOwy (seattle) .

_ // /\\\ -

snowy (snowy (troy)

m\

~ rainy (cold(

= seattle
&’R\

rainy (seattle) rainy (rochester)

cold (rochester) .

cold (rochester)

C. Varela 8

Cut (!) Example 3

rainy (seattle) :—- !.

rainy (rochester) .

cold (rochester) .

snowy (X) :—- rainy(X), cold(X).
snowy (troy) .

C. Varela

Cut (!) Example 3

rainy (seattle) :- !. C = troy SUCCEEDS

rainy (rochester) . | | | Only rainy(X) is

cold(rochester) . committed to

snowy (X) :- rainy(X), cold(—
Snowy bindings (X =
snowy (troy) . seattle).
SNoOwy (snowy (troy)

" rainy(/ cold (X)
X = Sey \
rainy (seattle) rainy (rochester)

0 C. Varela 10

cold (rochester)

Cut (!) Example 4

raliny (seattle).

rainy (rochester) .

cold (rochester) .

snowy (X) :— !, rainy(X), cold(X).

C. Varela

11

Cut (!) Example 4

rainy (seattle) .

rainy (rochester) .

cold (rochester) .

snowy (X) := !, rainy(X), cold(X).

snowy (C)

C= X success

snowy (X)

cold (seattle)
fails;
%NI\ backtrack.

/ rainy (X) cold (X

X = seattle X hest
= rochnhester
"”’,/////,/”ZSIé\‘\\~\-\\\\\\\\
)

rainy (roches®ter)

ai eattle

C. Varela 12

Cut (!) Example 5

raliny (seattle).

rainy (rochester).

cold (rochester) .

snowy (X) :—- rainy(X), cold(X), !'.

C. Varela

Cut (!) Example 5

rainy (seattle) .

rainy (rochester) .

cold (rochester) .

snowy (X) :- rainy(X), cold(X), !.

snowy (C)

C= X success

snowy (X)L

%ND

//// rainy (X)

X = seattle X hest
= rochester
"”,,/////,/”ZSIé\‘\\\\-\~\\\\\\

ai eattle) rainy (roches®ter)

cold (roch

C. Varela 14

First-Class Terms

call (P)

Invoke predicate as a goal.

assert (P)

Adds predicate to database.

retract (P)

Removes predicate from
database.

functor (T, F,A)

Succeeds if T is a term with
functor ¥ and arity A.

findall (F, P, L)

Returns a list L with
elements F satisfying
predicate P

C. Varela

15

not P 1snot —-P

* In Prolog, the database of facts and rules includes a list of things
assumed to be true.

« It does not include anything assumed to be false.

« Unless our database contains everything that is true (the closed-world
assumption), the goal not P (or \+ P in some Prolog
implementations) can succeed simply because our current knowledge
is insufficient to prove P.

C. Varela 16

More not vs -

?= snowy (X) .
X = rochester
?= not (snowy (X)) .

no

Prolog does not reply: X = seattle.

The meaning of not (snowy (X)) is:
-dX [snowy (X)]

rather than:
dX [=snowy (X)]

C. Varela

17

Fail, true, repeat

fail Fails current goal.

true Always succeeds.

repeat Always succeeds, provides
infinite choice points.

repeat.

repeat :©— repeat.

C. Varela

not Semantics

not (P) :— call(P), !, fail.
not (P) .

Definition of not 1n terms of failure (fail) means that variable
bindings are lost whenever not succeeds, e.g.:

?= not (not (snowy (X))) .
X= G147

C. Varela

19

Conditionals and Loops

statement :- condition, !, then.

statement :— else.

natural (1) .
natural (N) :- natural(M), N 1s M+1.

my loop (N) :— N>0,
natural (I),
write(I), nl,
I=N,
', fail.

Also called generate-and-test.
C. Varela 20

Prolog

[a,b, c] 1issyntactic sugar for:

where [] 1isthe empty list, and .

[a,b,c] can also be expressed as:

la | [b,cl] ,or
la, b [[c]] ,or
la,b,c | []]

C. Varela

l1sts

1s a built-in cons-like functor.

21

Prolog lists append example

append([],L,L).
append ([H|T], A, [H[IL]) :- append(T,A,L).

C. Varela

22

10.

Exercises

What do the following Prolog queries do?

?— repeat.

?= repeat, true.

?- repeat, fail.

Corroborate your thinking with a Prolog interpreter.

Draw the search tree for the query “not (not (snowy (City)))
When are variables bound/unbound in the search/backtracking
process?

PLP Exercise 11.7 (pg 571).

C. Varela

7

23

