
C. Varela 1

Logic Programming (PLP 11)
Prolog: Arithmetic, Equalities, Operators, I/O,

Natural Language Parsing

Carlos Varela
Rennselaer Polytechnic Institute

September 5, 2014

C. Varela 2

Arithmetic Goals

 N>M
 N<M
 N=<M
 N>=M

•  N and M must be bound to numbers for these tests to succeed or fail.

•  X is 1+2 is used to assign numeric value of right-hand-side to
variable in left-hand-side.

C. Varela 3

Loop Revisited

natural(1).
natural(N) :- natural(M), N is M+1.

my_loop(N) :- N>0,
 natural(I),
 write(I), nl,
 I=N,
 !.

my_loop(_).

 Also called generate-and-test.

C. Varela 4

= is not equal to == or =:=

 X=Y X\=Y
 test whether X and Y can be or cannot be unified.

 X==Y X\==Y
 test whether X and Y are currently co-bound, i.e.,

 have been bound to, or share the same value.

 X=:=Y X=\=Y
 test arithmetic equality and inequality.

C. Varela 5

More equalities

 X=@=Y X\=@=Y
 test whether X and Y are structurally identical.

•  =@= is weaker than == but stronger than =.

•  Examples:
 a=@=A false
 A=@=B true
 x(A,A)=@=x(B,C) false
 x(A,A)=@=x(B,B) true
 x(A,B)=@=x(C,D) true

C. Varela 6

More on equalities
 X==Y
 ⇒ X=@=Y
 ⇒ X=Y

 but not the other way (⇐).

•  If two terms are currently co-bound, they are structurally identical, and
therefore they can unify.

•  Examples:
 a=@=A false
 A=@=B true
 x(A,A)=@=x(B,C) false
 x(A,A)=@=x(B,B) true
 x(A,B)=@=x(C,D) true

C. Varela 7

Prolog Operators
 :- op(P,T,O)
 declares an operator symbol O with precedence P and type T.

•  Example:
 :- op(500,xfx,’has_color’)
 a has_color red.
 b has_color blue.

 then:
 ?- b has_color C.
 C = blue.
 ?- What has_color red.
 What = a.

C. Varela 8

Operator precedence/type
•  Precendence P is an integer: the larger the number, the

less the precedence (ability to group).
•  Type T is one of:

T Position Associativity Examples
xfx Infix Non-associative is
xfy Infix Right-associative , ;
yfx Infix Left-associative + - * /
fx Prefix Non-associative ?-
fy Prefix Right-associative
xf Postfix Non-associative
yf Postfix Left-associative

C. Varela 9

Testing types

 atom(X)
 tests whether X is an atom, e.g., ‘foo’, bar.

 integer(X)
 tests whether X is an integer; it does not test for complex

 terms, e.g., integer(4/2) fails.

 float(X)
 tests whether X is a float; it matches exact type.

 string(X)
 tests whether X is a string, enclosed in `` … ``.

C. Varela 10

Prolog Input

 seeing(X)
 succeeds if X is (or can be) bound to current read port.
 X = user is keyboard (standard input.)
 see(X)
 opens port for input file bound to X, and makes it current.
 seen
 closes current port for input file, and makes user current.
 read(X)
 reads Prolog type expression from current port, storing value

 in X.
 end-of-file
 is returned by read at <end-of-file>.

C. Varela 11

Prolog Output
 telling(X)
 succeeds if X is (or can be) bound to current output port.
 X = user is screen (standard output.)
 tell(X)
 opens port for output file bound to X, and makes it current.
 told
 closes current output port, and reverses to screen output

 (makes user current.)
 write(X)
 writes Prolog expression bound to X into current output port.
 nl
 new line (line feed).
 tab(N)
 writes N spaces to current output port.

C. Varela 12

I/O Example

browse(File) :-
 seeing(Old), /* save for later */
 see(File), /* open this file */
 repeat,
 read(Data), /* read from File */
 process(Data),
 seen, /* close File */
 see(Old), /* prev read source */
 !. /* stop now */

process(end_of_file) :- !.
process(Data) :- write(Data), nl, fail.

C. Varela 13

First-Class Terms Revisited

call(P) Invoke predicate as a goal.

assert(P) Adds predicate to database.

retract(P) Removes predicate from database.

functor(T,F,A)
Succeeds if T is a term with functor F
and arity A.

findall(F,P,L)

 Returns a list L with all elements F
 satisfying predicate P

clause(H,B)
Succeeds if the clause H :- B can be
found in the database.

C. Varela 14

Natural Language Parsing
(Example from "Learn Prolog Now!” Online Tutorial)

word(article,a).
word(article,every).
word(noun,criminal).
word(noun,'big kahuna burger').
word(verb,eats).
word(verb,likes).

sentence(Word1,Word2,Word3,Word4,Word5) :-

 word(article,Word1),
 word(noun,Word2),
 word(verb,Word3),
 word(article,Word4),
 word(noun,Word5).

C. Varela 15

Parsing natural language

•  Definite Clause Grammars (DCG) are useful for natural language
parsing.

•  Prolog can load DCG rules and convert them automatically to Prolog
parsing rules.

C. Varela 16

DCG Syntax
 -->
 DCG operator, e.g.,

 sentence-->subject,verb,object.

 Each goal is assumed to refer to the head of a DCG rule.

 {prolog_code}
 Include Prolog code in generated parser, e.g.,

 subject-->modifier,noun,{write(‘subject’)}.

 [terminal_symbol]
 Terminal symbols of the grammar, e.g.,

 noun-->[cat].

C. Varela 17

Natural Language Parsing
(example rewritten using DCG)

sentence --> article, noun, verb, article, noun.

article --> [a] | [every].

noun --> [criminal] | ['big kahuna burger'].

verb --> [eats] | [likes].

C. Varela 18

Exercises

12. How would you translate DCG rules into Prolog rules?
13. PLP Exercise 11.8 (pg 571).
14. PLP Exercise 11.14 (pg 572).

