Declarative Programming Techniques
Accumulators (CTM 3.4.3)

Carlos Varela
RPI

Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL

September 9, 2014

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 1

Accumulators

Accumulator programming 1s a way to handle state in
declarative programs. It 1s a programming technique that
uses arguments to carry state, transform the state, and pass
it to the next procedure.

Assume that the state S consists of a number of
components to be transformed individually:

S=X,Y.Z,..)
For each predicate P, each state component 1s made into a

pair, the first component 1s the input state and the second
component 1s the output state after P has terminated

S 1s represented as
x..xX Y. .Y Z Z

n° ““outd “in *outd “iw outﬂ"')

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

A Trivial Example in Prolog

increment(NO,N) :-
Nis NO + 1.

square(NOQ,N) :-
N is NO * NO.

inc_square(NOQ,N) :-
increment(NO,N1),
square(N1,N).

increment takes NO as the input
and produces N as the output by
adding 1 to NO.

square takes NO as the input and
produces N as the output by
multiplying NO to itself.

inc square takes NO as the input
and produces N as the output by
using an intermediate variable N1 to
carry NO+1 (the output of
increment) and passing it as input
to square. The pairs NO-N1 and
N1-N are called accumulators.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 3

A Trivial Example 1n Oz

proc {Increment NO N}
N=NO +1
end

proc {Square NO N}
N =NO *NO
end

proc {IncSquare NO N}
N1 in
{Increment NO N1}
{Square N1 N}
end

Increment takes NO as the input
and produces N as the output by
adding 1 to NO.

Square takes NO as the input and
produces N as the output by
multiplying NO to itself.

IncSquare takes NO as the input
and produces N as the output by
using an intermediate variable N1 to
carry NO+1 (the output of
Increment) and passing it as input
to Square. The pairs NO-N1 and

N1-N are called accumulators.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 4

Accumulators

« Assume that the state S consists of a number of components to be
transformed individually:

S=XY.2)
* Assume P1 to Pn are procedures in Oz

accumulator

A
proc {P X, XY,Y Z,Z} The same
; concept
{P1 X, X,Y,Y, Z,Z} applies to
(P2X, X, Y, Y, Z,Z,} predicates in
; Prolog

{Pl’l Xn-l X Yn-l Y Zn-l Z}
end

* The procedural syntax 1s easier to use if there 1s more than one
accumulator

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 5

MergeSort Example

Consider a variant of MergeSort with accumulator
proc {MergeSortl N SO S Xs}

— N is an integer,

— SO0 1s an nput list to be sorted

— S 1s the remainder of SO after the first N elements are sorted
— Xs 1s the sorted first N elements of SO

The pair (S0, S) 1s an accumulator

The definition 1s in a procedural syntax in Oz because it
has two outputs S and Xs

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Example (2)

fun {MergeSort Xs} proc {MergeSort1 N SO S Xs}
Ys in if N==0 then S = SO Xs = nil
{MergeSort1 {Length Xs} Xs _ Ys} elseif N ==1 then X in X|S = S0 Xs=[X]
Ys else %% N > 1
end local $1Xs1 Xs2 NLNR in
NL = N div 2
NR=N-NL

{MergeSort1 NL SO S1 Xs1}
{MergeSort1 NR S1 S Xs2}
Xs = {Merge Xs1 Xs2}
end
end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 7

MergeSort Example 1in Prolog

mergesort(Xs,Ys) :- mergesort1(0,S,S,[]) :- .
length(Xs,N), mergesort1(1,[X|S],S,[X]) :- !.
mergesort1(N,Xs,_,Ys). mergesort1(N,S0,S,Xs) :-

NLisN// 2,
NRis N - NL,

mergesort1(NL,S0,S1,Xs1),
mergesort1(NR,S1,5,Xs2),
merge(Xs1,Xs2,Xs).

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Multiple accumulators

* Consider a stack machine for evaluating
arithmetic expressions

« Example: (1+4)-3
« The machine executes the following
instructions
push(1)
push(4)
plus
push(3) 4 5

minus 1

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Multiple accumulators (2)

Example: (1+4)-3

The arithmetic expressions are represented as trees:
minus(plus(1 4) 3)

Write a procedure that takes arithmetic expressions

represented as trees and output a list of stack machine
instructions and counts the number of instructions

proc {ExprCode Expr Cin Cout Nin Nout}
Cin: initial list of instructions
Cout: final list of instructions

Nin: initial count
Nout: final count

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

10

Multiple accumulators (3)

proc {ExprCode Expr CO C NO N}
case Expr
of plus(Expr1 Expr2) then C1 N1 in
C1 = plus|CO
N1=NO + 1
{SeqCode [Expr2 Expr1] C1 C N1 N}
[] minus(Expr1 Expr2) then C1 N1 in
C1 =minus|CO
N1=NO + 1
{SeqCode [Expr2 Expr1] C1 C N1 N}
[] I andthen {IsInt I} then
C = push(l)|CO
N=NO +1
end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

11

Multiple accumulators (4)

proc {ExprCode Expr CO C NO N} proc {SeqCode Es CO C NO N}

case Expr case Es

of plus(Expr1 Expr2) then C1 N1 in of nil then C=CO N =NO
C1 = plus|CO [] E|Erthen N1 C1in
N1=NO + 1 {ExprCode E CO C1 NO N1}
{SeqCode [Expr2 Expr1] C1 C N1 N} {SeqCode Er C1 C N1 N}

[] minus(Expr1 Expr2) then C1 N1 in end
C1 =minus|CO end
N1=NO + 1

{SeqCode [Expr2 Expr1] C1 C N1 N}
[] I andthen {IsInt I} then
C = push(l)|CO
N=NO +1
end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

12

Shorter version (4)

proc {ExprCode Expr CO C NO N} proc {SeqCode Es CO C NO N}
case Expr case Es
of plus(Expr1 Expr2) then of nilthen C=C0 N =NO
{SeqCode [Expr2 Expr1] plus|CO C NO + 1 N} [] E|Er then N1 C1in
[minus(Expr1 Expr2) then {ExprCode E CO C1 NO N1}
{SeqCode [Expr2 Expr1] minus|CO C NO + 1 N} {SeqCode Er C1 C N1 N}
[I andthen {IsInt I} then end
C = push(1)|CO end
N=NO + 1
end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 13

Functional style (4)

fun {ExprCode Expr t(CO NO) } fun {SeqCode Es T}
case Expr case Es
of plus(Expr1 Expr2) then of nil then T
{SeqCode [Expr2 Expr1] t(plus|CO NO + 1)} [| E|Er then
[minus(Expr1 Expr2) then T1 = {ExprCode E T} in
{SeqCode [Expr2 Expr1] t(minus|CO NO + 1)} {SeqCode Er T1}
[I andthen {IsInt I} then end
t(push(1)|CO NO + 1) end
end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

14

Exercises

15. Understand how Oz supports logic programming by
comparing 1t to Prolog (read CTM Sect. 9.7; pp.660-671)

a)

b)

c)
d)

Download Mozart (Oz run-time system) and install 1t in your
laptop.

Rewrite your Prolog family program in Oz.

Rewrite the Prolog list append predicate in Oz.

Rewrite the Oz multiple accumulators example in Prolog.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 15

