
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 1

Declarative Programming Techniques
 Accumulators (CTM 3.4.3)

Carlos Varela
RPI

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

September 9, 2014

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Accumulators
•  Accumulator programming is a way to handle state in

declarative programs. It is a programming technique that
uses arguments to carry state, transform the state, and pass
it to the next procedure.

•  Assume that the state S consists of a number of
components to be transformed individually:
 S = (X,Y,Z,...)

•  For each predicate P, each state component is made into a
pair, the first component is the input state and the second
component is the output state after P has terminated

•  S is represented as
 (Xin, Xout, Yin, Yout, Zin, Zout,...)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 3

A Trivial Example in Prolog
increment(N0,N) :-

 N is N0 + 1.

square(N0,N) :-

 N is N0 * N0.

inc_square(N0,N) :-

 increment(N0,N1),
 square(N1,N).

increment takes N0 as the input
and produces N as the output by
adding 1 to N0.

square takes N0 as the input and
produces N as the output by
multiplying N0 to itself.

inc_square takes N0 as the input
and produces N as the output by
using an intermediate variable N1 to
carry N0+1 (the output of
increment) and passing it as input
to square. The pairs N0-N1 and
N1-N are called accumulators.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 4

A Trivial Example in Oz
proc {Increment N0 N}

 N = N0 + 1
end

proc {Square N0 N}

 N = N0 * N0
end

proc {IncSquare N0 N}

 N1 in
 {Increment N0 N1}
 {Square N1 N}

end

Increment takes N0 as the input
and produces N as the output by
adding 1 to N0.

Square takes N0 as the input and
produces N as the output by
multiplying N0 to itself.

IncSquare takes N0 as the input
and produces N as the output by
using an intermediate variable N1 to
carry N0+1 (the output of
Increment) and passing it as input
to Square. The pairs N0-N1 and
N1-N are called accumulators.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 5

Accumulators
•  Assume that the state S consists of a number of components to be

transformed individually:
 S = (X,Y,Z)

•  Assume P1 to Pn are procedures in Oz

 proc {P X0 X Y0 Y Z0 Z}
 :
 {P1 X0 X1 Y0 Y1 Z0 Z1}
 {P2 X1 X2 Y1 Y2 Z1 Z2}
 :
 {Pn Xn-1 X Yn-1 Y Zn-1 Z}

end
•  The procedural syntax is easier to use if there is more than one

accumulator

accumulator

The same
concept

applies to
predicates in

Prolog!

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 6

MergeSort Example
•  Consider a variant of MergeSort with accumulator
•  proc {MergeSort1 N S0 S Xs}

–  N is an integer,
–  S0 is an input list to be sorted
–  S is the remainder of S0 after the first N elements are sorted
–  Xs is the sorted first N elements of S0

•  The pair (S0, S) is an accumulator
•  The definition is in a procedural syntax in Oz because it

has two outputs S and Xs

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 7

Example (2)
fun {MergeSort Xs}
 Ys in
 {MergeSort1 {Length Xs} Xs _ Ys}
 Ys
end

proc {MergeSort1 N S0 S Xs}
 if N==0 then S = S0 Xs = nil
 elseif N ==1 then X in X|S = S0 Xs=[X]
 else %% N > 1

 local S1 Xs1 Xs2 NL NR in
 NL = N div 2
 NR = N - NL
 {MergeSort1 NL S0 S1 Xs1}
 {MergeSort1 NR S1 S Xs2}
 Xs = {Merge Xs1 Xs2}
 end
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 8

MergeSort Example in Prolog
mergesort(Xs,Ys) :-
 length(Xs,N),
 mergesort1(N,Xs,_,Ys).

mergesort1(0,S,S,[]) :- !.
mergesort1(1,[X|S],S,[X]) :- !.
mergesort1(N,S0,S,Xs) :-

 NL is N // 2,
 NR is N - NL,
 mergesort1(NL,S0,S1,Xs1),
 mergesort1(NR,S1,S,Xs2),
 merge(Xs1,Xs2,Xs).

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 9

Multiple accumulators
•  Consider a stack machine for evaluating

arithmetic expressions
•  Example: (1+4)-3
•  The machine executes the following

instructions
 push(1)
push(4)
plus
push(3)
minus

 4
 1

 5 3
 5

 2

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 10

Multiple accumulators (2)
•  Example: (1+4)-3
•  The arithmetic expressions are represented as trees:

 minus(plus(1 4) 3)
•  Write a procedure that takes arithmetic expressions

represented as trees and output a list of stack machine
instructions and counts the number of instructions

 proc {ExprCode Expr Cin Cout Nin Nout}

•  Cin: initial list of instructions
•  Cout: final list of instructions
•  Nin: initial count
•  Nout: final count

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 11

Multiple accumulators (3)
proc {ExprCode Expr C0 C N0 N}
 case Expr
 of plus(Expr1 Expr2) then C1 N1 in
 C1 = plus|C0
 N1 = N0 + 1
 {SeqCode [Expr2 Expr1] C1 C N1 N}
 [] minus(Expr1 Expr2) then C1 N1 in
 C1 = minus|C0
 N1 = N0 + 1
 {SeqCode [Expr2 Expr1] C1 C N1 N}
 [] I andthen {IsInt I} then
 C = push(I)|C0
 N = N0 + 1
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 12

Multiple accumulators (4)
proc {ExprCode Expr C0 C N0 N}
 case Expr
 of plus(Expr1 Expr2) then C1 N1 in
 C1 = plus|C0
 N1 = N0 + 1
 {SeqCode [Expr2 Expr1] C1 C N1 N}
 [] minus(Expr1 Expr2) then C1 N1 in
 C1 = minus|C0
 N1 = N0 + 1
 {SeqCode [Expr2 Expr1] C1 C N1 N}
 [] I andthen {IsInt I} then
 C = push(I)|C0
 N = N0 + 1
 end
end

proc {SeqCode Es C0 C N0 N}
 case Es
 of nil then C = C0 N = N0
 [] E|Er then N1 C1 in
 {ExprCode E C0 C1 N0 N1}
 {SeqCode Er C1 C N1 N}
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 13

Shorter version (4)
proc {ExprCode Expr C0 C N0 N}
 case Expr
 of plus(Expr1 Expr2) then
 {SeqCode [Expr2 Expr1] plus|C0 C N0 + 1 N}
 [] minus(Expr1 Expr2) then
 {SeqCode [Expr2 Expr1] minus|C0 C N0 + 1 N}
 [] I andthen {IsInt I} then
 C = push(I)|C0
 N = N0 + 1
 end
end

proc {SeqCode Es C0 C N0 N}
 case Es
 of nil then C = C0 N = N0
 [] E|Er then N1 C1 in
 {ExprCode E C0 C1 N0 N1}
 {SeqCode Er C1 C N1 N}
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 14

Functional style (4)
fun {ExprCode Expr t(C0 N0) }
 case Expr
 of plus(Expr1 Expr2) then
 {SeqCode [Expr2 Expr1] t(plus|C0 N0 + 1)}
 [] minus(Expr1 Expr2) then
 {SeqCode [Expr2 Expr1] t(minus|C0 N0 + 1)}
 [] I andthen {IsInt I} then
 t(push(I)|C0 N0 + 1)
 end
end

fun {SeqCode Es T}
 case Es
 of nil then T
 [] E|Er then

 T1 = {ExprCode E T} in
 {SeqCode Er T1}
 end
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 15

Exercises

15. Understand how Oz supports logic programming by
comparing it to Prolog (read CTM Sect. 9.7; pp.660-671)
a)  Download Mozart (Oz run-time system) and install it in your

laptop.
b)  Rewrite your Prolog family program in Oz.
c)  Rewrite the Prolog list append predicate in Oz.
d)  Rewrite the Oz multiple accumulators example in Prolog.

