
C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 1

Declarative Programming Techniques
 Difference Lists (CTM 3.4.4)

Carlos Varela
RPI

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

September 12, 2014

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Difference lists in Oz
•  A difference list is a pair of lists, each might have an

unbound tail, with the invariant that one can get the second
list by removing zero or more elements from the first list

•  X # X % Represent the empty list
•  nil # nil % idem
•  [a] # [a] % idem
•  (a|b|c|X) # X % Represents [a b c]
•  [a b c d] # [d] % idem

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 3

Difference lists in Prolog
•  A difference list is a pair of lists, each might have an

unbound tail, with the invariant that one can get the second
list by removing zero or more elements from the first list

•  X , X % Represent the empty list
•  [] , [] % idem
•  [a] , [a] % idem
•  [a,b,c|X] , X % Represents [a,b,c]
•  [a,b,c,d] , [d] % idem

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 4

Difference lists in Oz (2)
•  When the second list is unbound, an append operation with

another difference list takes constant time
•  fun {AppendD D1 D2}

 S1 # E1 = D1
 S2 # E2 = D2

in E1 = S2
 S1 # E2

end
•  local X Y in {Browse {AppendD (1|2|3|X)#X (4|5|Y)#Y}} end
•  Displays (1|2|3|4|5|Y)#Y

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 5

Difference lists in Prolog (2)
•  When the second list is unbound, an append operation with another difference

list takes constant time

 append_dl(S1,E1, S2,E2, S1,E2) :- E1 = S2.

•  ?- append_dl([1,2,3|X],X, [4,5|Y],Y, S,E).

Displays
 X = [4, 5|_G193]
 Y = _G193
 S = [1, 2, 3, 4, 5|_G193]
 E = _G193 ;

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 6

A FIFO queue
with difference lists (1)

•  A FIFO queue is a sequence of elements with an insert and a delete operation.
–  Insert adds an element to the end and delete removes it from the beginning

•  Queues can be implemented with lists. If L represents the queue content, then
deleting X can remove the head of the list matching X|T but inserting X
requires traversing the list {Append L [X]} (insert element at the end).

–  Insert is inefficient: it takes time proportional to the number of queue elements
•  With difference lists we can implement a queue with constant-time insert and

delete operations
–  The queue content is represented as q(N S E), where N is the number of elements

and S#E is a difference list representing the elements

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 7

A FIFO queue
with difference lists (2)

•  Inserting ‘b’:
–  In: q(1 a|T T)
–  Out: q(2 a|b|U U)

•  Deleting X:
–  In: q(2 a|b|U U)
–  Out: q(1 b|U U)

and X=a
•  Difference list allows

operations at both ends
•  N is needed to keep track

of the number of queue
elements

fun {NewQueue} X in q(0 X X) end

fun {Insert Q X}

 case Q of q(N S E) then E1 in E=X|E1 q(N+1 S E1) end
end

fun {Delete Q X}

 case Q of q(N S E) then S1 in X|S1=S q(N-1 S1 E) end
end

fun {EmptyQueue Q} case Q of q(N S E) then N==0 end end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 8

Flatten

fun {Flatten Xs}
case Xs
 of nil then nil
 [] X|Xr andthen {IsLeaf X} then
 X|{Flatten Xr}
 [] X|Xr andthen {Not {IsLeaf X}} then
 {Append {Flatten X} {Flatten Xr}}
 end
end

Flatten takes a list of
elements and sub-lists
and returns a list with
only the elements, e.g.:

{Flatten [1 [2] [[3]]]} =
[1 2 3]

Let us replace lists by
difference lists and see
what happens.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 9

Flatten with difference lists (1)

•  Flatten of nil is X#X
•  Flatten of a leaf X|Xr is (X|Y1)#Y

–  flatten of Xr is Y1#Y

•  Flatten of X|Xr is Y1#Y where
–  flatten of X is Y1#Y2
–  flatten of Xr is Y3#Y
–  equate Y2 and Y3

Here is what it looks like
as text

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 10

Flatten with difference lists (2)
proc {FlattenD Xs Ds}
 case Xs
 of nil then Y in Ds = Y#Y
 [] X|Xr andthen {IsLeaf X} then Y1 Y in
 {FlattenD Xr Y1#Y2}
 Ds = (X|Y1)#Y
 [] X|Xr andthen {IsList X} then Y0 Y1 Y2 in

 Ds = Y0#Y2
 {FlattenD X Y0#Y1}

 {FlattenD Xr Y1#Y2}
 end
end
fun {Flatten Xs} Y in {FlattenD Xs Y#nil} Y end

Here is the new
program. It is much
more efficient than the
first version.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 11

Reverse

•  Here is our recursive reverse:

•  Rewrite this with difference lists:
–  Reverse of nil is X#X
–  Reverse of X|Xs is Y1#Y, where

•  reverse of Xs is Y1#Y2, and
•  equate Y2 and X|Y

fun {Reverse Xs}
 case Xs
 of nil then nil
 [] X|Xr then {Append {Reverse Xr} [X]}
 end

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 12

Reverse with difference lists (1)

•  The naive version takes
time proportional to the
square of the input length

•  Using difference lists in the
naive version makes it
linear time

•  We use two arguments Y1
and Y instead of Y1#Y

•  With a minor change we
can make it iterative as
well

fun {ReverseD Xs}
proc {ReverseD Xs Y1 Y}

 case Xs
 of nil then Y1=Y
 [] X|Xr then Y2 in
 {ReverseD Xr Y1 Y2}
 Y2 = X|Y
 end

end
R in

 {ReverseD Xs R nil}
R

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 13

Reverse with difference lists (2)

fun {ReverseD Xs}
proc {ReverseD Xs Y1 Y}

 case Xs
 of nil then Y1=Y
 [] X|Xr then
 {ReverseD Xr Y1 X|Y}
 end

end
R in

 {ReverseD Xs R nil}
R

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 14

Difference lists: Summary

•  Difference lists are a way to represent lists in the declarative model
such that one append operation can be done in constant time
–  A function that builds a big list by concatenating together lots of little lists

can usually be written efficiently with difference lists
–  The function can be written naively, using difference lists and append, and

will be efficient when the append is expanded out
•  Difference lists are declarative, yet have some of the power of

destructive assignment
–  Because of the single-assignment property of dataflow variables

•  Difference lists originated from Prolog and are used to implement, e.g.,
definite clause grammar rules for natural language parsing.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 15

Exercises

16. Draw the search trees for Prolog queries:
•  append([1,2],[3],L).

•  append(X,Y,[1,2,3]).
•  append_dl([1,2|X],X,[3|Y],Y,S,E).

17. CTM Exercise 3.10.11 (page 232)
18. CTM Exercise 3.10.14 (page 232)
19. CTM Exercise 3.10.15 (page 232)

