Declarative Programming Techniques
Difference Lists (CTM 3.4.4)

Carlos Varela
RPI

Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL

September 12, 2014

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 1

Difference lists in Oz

A difference list 1s a pair of lists, each might have an
unbound tail, with the invariant that one can get the second
list by removing zero or more elements from the first list

X#X % Represent the empty list
nil # nil % 1dem

[a] # [a] % 1dem

(alb|c|X) # X % Represents [a b c]

[abcd]#[d] % 1dem

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 2

Difference lists in Prolog

A difference list 1s a pair of lists, each might have an
unbound tail, with the invariant that one can get the second
list by removing zero or more elements from the first list

X,X % Represent the empty list
1, (] % idem

a], [a] % 1dem

a,b,c|X], X % Represents [a,b,c]
a,b,c,d], [d] % 1dem

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 3

Difference lists in Oz (2)

When the second list 1s unbound, an append operation with
another difference list takes constant time

fun {AppendD D1 D2}
S1#E1=D1
S2#E2=D2

in E1=382
ST#E2

end

local X Y in {Browse {AppendD (1|2|3|X)#X (4|5|Y)#Y}} end
Displays (1]2|3|4|5]Y)#Y

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Difference lists in Prolog (2)

* When the second list is unbound, an append operation with another difference
list takes constant time

append_dI(S1,E1, S2,E2, S1,E2) - E1=S2.
« ?-append dl([1,2,3|X].X, [4,5]Y],Y, S,E).
Displays
X =1[4, 5| G193]
Y= G193

S=[1,2,3,4,5 G193]
E= G193 ;

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 5

A FIFO queue
with difference lists (1)

A FIFO queue 1s a sequence of elements with an insert and a delete operation.

— Insert adds an element to the end and delete removes it from the beginning
Queues can be implemented with lists. If L represents the queue content, then
deleting X can remove the head of the list matching X|T but inserting X
requires traversing the list {Append L [X]} (insert element at the end).

— Insert is inefficient: it takes time proportional to the number of queue elements
With difference lists we can implement a queue with constant-time insert and
delete operations

— The queue content is represented as (N S E), where N is the number of elements
and S#E i1s a difference list representing the elements

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

A FIFO queue
with difference lists (2)

fun {NewQueue} X in q(0 X X) end « Inserting ‘b’:
— In:q(1a[TT)
fun {Insert Q X} — Out: g(2afb|U U)

case Qof q(N S E) then E1 in E=X|E1 q(N+1 SE1)end ° DeletingX:

end — In: g(2 alb|U U)
— Out: g(1 b|U U)
and X=a
fun {Delete Q X} Difference list allows
case Qof (N S E) then S1 in X|S1=S q(N-1 S1 E) end operations at both ends
end « N is needed to keep track

of the number of queue

fun {EmptyQueue Q} case Q of (N S E) then N==0 end end elements

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 7

Flatten

fun {Flatten Xs}
case Xs
of nil then nil
[] X|Xr andthen {IsLeaf X} then
X|{Flatten Xr}
[] X|Xr andthen {Not {IsLeaf X}} then
{Append {Flatten X} {Flatten Xr}}
end
end

Flatten takes a list of
elements and sub-lists
and returns a list with
only the elements, e.g.:

{Flatten [1 [2] [[3]]]} =
[123]

Let us replace lists by
difference lists and see
what happens.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

Flatten with difference lists (1)

e Flatten of nil is X#X Here 1s what it looks like

 Flatten of a leaf X|Xr 1s (X|Y1)#Y as text
— flatten of Xr is Y1#Y

« Flatten of X|Xr 1s Y1#Y where
— flatten of X 1s Y1#Y2
— flatten of Xr1s Y3#Y
— equate Y2 and Y3

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 9

Flatten with difference lists (2)

proc {FlattenD Xs Ds}
case Xs Here 1s the new
of nil then Y in Ds = Y#Y program. It is much
[] X|Xr andthen {IsLeaf X} then Y1 Y in more efficient than the
{FlattenD Xr Y1#Y2} first version.
Ds = (X|Y1)#Y

[1 X|Xr andthen {IsList X} then YO Y1 Y2 in
Ds = YO#Y2

{FlattenD X YO#Y1}
{FlattenD Xr Y1#Y2}

end
end
fun {Flatten Xs} Y in {FlattenD Xs Y#nil} Y end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 10

Reverse

Here 1s our recursive reverse:

fun {Reverse Xs}
case Xs
of nil then nil
[] X|[Xr then {Append {Reverse Xr} [X]}
end
end

Rewrite this with difference lists:
— Reverse of nil 1s X#X

— Reverse of X|Xs 1s Y1#Y, where
» reverse of Xsis Y1#Y2, and
* equate Y2 and X|Y

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

11

Reverse with difference lists (1)

The naive version takes fun {ReverseD Xs}
time proportional to the proc {ReverseD Xs Y1 Y}
square of the input length case Xs
Using difference lists in the of nil then Y1=Y
naive version makes it] X|Xr then Y2 in
linear time ReverseD Xr Y1 Y2}
We use two arguments Y 1 Y2 = X|Y
and Y instead of Y1#Y end
With a minor change we end
can make it iterative as Rin
well .

{ReverseD Xs R nil}

R

end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 12

Reverse with difference lists (2)

fun {ReverseD Xs}
proc {ReverseD Xs Y1 Y}

case Xs
of nil then Y1=Y
[] X|Xrthen
{ReverseD Xr Y1 X|Y}
end
end
Rin
{ReverseD Xs R nil}
R
end

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

13

Difference lists: Summary

Difference lists are a way to represent lists in the declarative model
such that one append operation can be done in constant time

— A function that builds a big list by concatenating together lots of little lists
can usually be written efficiently with difference lists

— The function can be written naively, using difference lists and append, and
will be efficient when the append 1s expanded out

Diftference lists are declarative, yet have some of the power of
destructive assignment

— Because of the single-assignment property of dataflow variables

Diftference lists originated from Prolog and are used to implement, e.g.,
definite clause grammar rules for natural language parsing.

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy 14

Exercises

16. Draw the search trees for Prolog queries:
append ([1,2],[3],L).
* append(X,Y,[1,2,3]).

* append dl([1,2[X],X,[3]Y],Y,S,E).

17. CTM Exercise 3.10.11 (page 232)
18. CTM Exercise 3.10.14 (page 232)
19. CTM Exercise 3.10.15 (page 232)

C. Varela; Adapted w/permission from S. Haridi and P. Van Roy

15

