Lambda Calculus (PDCS 2)

higher-order programming, eta-conversion,
recursion combinator, numbers, booleans

Carlos Varela
Rennselaer Polytechnic Institute

September 19, 2014

C. Varela



Lambda Calculus Syntax and Semantics

The syntax of a A-calculus expression is as follows:

e = \% variable
| Av.e functional abstraction
| (ee) function application

The semantics of a A-calculus expression is as follows:
(AxEM) = E{M/x}

where we alpha-rename the lambda abstraction E if necessary to
avoid capturing free variables in M.

C. Varela



Normal vs Applicative Order of Evaluation
and Termination

Consider:

(Ax.y (Ax.(x x) Ax.(x x)))

Recall semantics rule:

(Ax.EM) = E{M/x}

There are two possible evaluation orders:

(Ax.y (Ax.(x x) Ax.(x x))) Apgligztive
= (Ax.y (Ax.(x x) Ax.(x x)))
and:
(Ax.y (Ax.(x x) Ax.(x x)))

Normal Order

=)

In this example, normal order terminates whereas applicative order

does not.
C. Varela 3



Free and Bound Variables

The lambda functional abstraction is the only syntactic construct
that binds variables. That is, in an expression of the form:

Av.e

we say that occurrences of variable v in expression e are bound. All
other variable occurrences are said to be free.

E.g.,
Bound Variables Free Variables

C. Varela



o.-renaming
Alpha renaming 1s used to prevent capturing free occurrences of
variables when beta-reducing a lambda calculus expression.
In the following, we rename x to z, (or any other fresh variable):
(Ax.(y x) x)
= (A(y2x)
Only bound variables can be renamed. No free variables can be

captured (become bound) in the process. For example, we cannot
alpha-rename x to y.

C. Varela



3-reduction

AxEM) 2 EpMx

Beta-reduction may require alpha renaming to prevent capturing
free variable occurrences. For example:

(Ax.Ap.(xy) (y w)

— (A Az.(xz) (Y W)

L Aowa

Where the free y remains free.

C. Varela



N-conversion

IX(Ex) > E
if x 1s not free in E.

For example:

(Ax.Ap.(xy) (y w)
5 (A Az(x2) (v W)
L daow o)

S o w

C. Varela



Combinators

A lambda calculus expression with no free variables is called a
combinator. For example:

I: Ax.x (Identity)

App: M-Ax.(f x) (Application)

C: AM.Ag. Ax.(f (g x)) (Composition)

L: (Ax.(x x) Ax.(x x)) (Loop)

Cur: M-Ax.A.((fx) y) (Currying)

Seq: Ax.Ay.(Az.y x) (Sequencing--normal order)
ASeq: Ax.Ap.(y x) (Sequencing--applicative order)

where y denotes a thunk, i.e., a lambda abstraction
wrapping the second expression to evaluate.

The meaning of a combinator is always the same independently of
its context.
C. Varela



Recursion Combinator (Y or rec)

Suppose we want to express a factorial function in the A calculus.

1 n=0
f(n) =n! = -

n*(n-1)! n>0

We may try to write it as:

f An.(if (=n 0)
1
(*n(f(-nl)))

But f'is a free variable that should represent our factorial function.

C. Varela



Recursion Combinator (Y or rec)

We may try to pass f as an argument (g) as follows:
f Ag.An.(if (=n 0)
;* n(g(-nl))
The type of fis:
ol —2) = (Z—2)

So, what argument g can we pass to f to get the factorial function?

C. Varela

10



Recursion Combinator (Y or rec)

fZ—=2Z)—(Z—2)
(f P 1s not well-typed.

(f I) corresponds to:

1 n=0
f(n) = -

n*(n-1) n>0

We need to solve the fixpoint equation:

X =X

C. Varela

11



Recursion Combinator (Y or rec)

X =X
The X that solves this equation is the following:
X: (Ax.(Ag.An.(if (= n 0)
1
(*n(g(-nl)))
Ay.((x x) y))
Ax.(Ag.An.(if (=n 0)
1

(*n(g(-nl)))
A.((x x) y)))

C. Varela

12



Recursion Combinator (Y or rec)

X can be defined as (Y f), where Y is the recursion combinator.

Y: M.(Ax.(f .((x x) y)) Applicative
Ax.(f Ay.((x x) y))) Order

Y M-(Ax.(f (x x))
Aol (e ) Normal Order

You get from the normal order to the applicative order recursion
combinator by m-expansion (n-conversion from right to left).

C. Varela



Natural Numbers in Lambda Calculus

10]:
Ik

|n+1|:

A

Ax.x
Ax. Ax.x

Ax.|n|

An.Ax.n

(Zero)
(One)

(N+1)

(Successor)

(s 0)

Recall semantics rule:

(Ax.EM) = E{M/x}

(An.Ax.n Ax.x)

= Ax. Ax.x

C. Varela

14




Booleans and Branching (if) in A Calculus

[true|:
|falsel:

il

Ax.Ay.x (True)
Ax.Ay.y (False)

Ab.At.Ae.(b ¥) e) (If)

Recall semantics rule:

(((if true) a) b) (Ax.EM) = E{M/x}

((Ab.At.Ae.((b ¥) e) Ax.Ay.x) a) b)
= (M. Ae.((Ax.Av.x 1) e) a) b)
= (Ae.((Ax.Av.x a) e) b)
= ((Ax.Ay.x a) b)
= (Ay.a b)

@a

C. Varela 15



24,
25.
26.
27.

28.
29.

Exercises

PDCS Exercise 2.11.7 (page 31).
PDCS Exercise 2.11.9 (page 31).
PDCS Exercise 2.11.10 (page 31).

Prove that your addition operation 1s correct using
induction.

PDCS Exercise 2.11.11 (page 31).
PDCS Exercise 2.11.12 (page 31).

C. Varela

16



