
C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 1

Introduction to Programming
Concepts (CTM Chapter 1)

Carlos Varela
RPI

September 23, 2014

Adapted with permission from:
Seif Haridi

KTH
Peter Van Roy

UCL

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 2

Introduction
•  An introduction to programming concepts
•  Declarative variables
•  Structured data (example: lists)
•  Functions over lists
•  Correctness and complexity
•  Lazy functions
•  Higher-order programming
•  Concurrency and dataflow
•  State, objects, and classes
•  Nondeterminism and atomicity

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 3

Variables
•  Variables are short-cuts for values, they cannot be assigned

more than once
 declare

 V = 9999*9999
 {Browse V*V}

•  Variable identifiers: is what you type
•  Store variable: is part of the memory system
•  The declare statement creates a store variable and assigns

its memory address to the identifier ’V’ in the environment

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 4

Functions
•  Compute the factorial function:
•  Start with the mathematical definition

 declare
 fun {Fact N}
 if N==0 then 1 else N*{Fact N-1} end
 end

•  Fact is declared in the environment
•  Try large factorial {Browse {Fact 100}}

nnn ×−×××=)1(21!

0 if)!1(!
1!0

>−×=

=

nnnn

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 5

Composing functions
•  Combinations of r items taken from n.
•  The number of subsets of size r taken from a set of size n

)!(!
!
rnr

n
r
n

−
="

#

$
%
&

'

 declare
 fun {Comb N R}
 {Fact N} div ({Fact R}*{Fact N-R})
 end

•  Example of functional abstraction

Comb

Fact Fact Fact

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 6

Structured data (lists)
•  Calculate Pascal triangle
•  Write a function that calculates the nth row as

one structured value
•  A list is a sequence of elements:

 [1 4 6 4 1]
•  The empty list is written nil
•  Lists are created by means of ”|” (cons)

 declare
 H=1
 T = [2 3 4 5]
 {Browse H|T} % This will show [1 2 3 4 5]

1
1 1

1 2 1

1 3 3 1

1 4 6 4 1

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 7

Lists (2)

•  Taking lists apart (selecting components)
•  A cons has two components: a head, and a tail

 declare L = [5 6 7 8]
 L.1 gives 5
 L.2 give [6 7 8]

‘|’

‘|’

‘|’

6

7

8 nil

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 8

Pattern matching

•  Another way to take a list apart is by use of pattern
matching with a case instruction

 case L of H|T then {Browse H} {Browse T}
 else {Browse ‘empty list’}
 end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 9

Functions over lists

•  Compute the function {Pascal N}
•  Takes an integer N, and returns the

Nth row of a Pascal triangle as a list
1.  For row 1, the result is [1]
2.  For row N, shift to left row N-1 and

shift to the right row N-1
3.  Align and add the shifted rows

element-wise to get row N

1
1 1

1 2 1

1 3 3 1

1 4 6 4 1

(0) (0)

[0 1 3 3 1]

[1 3 3 1 0]

Shift right

Shift left

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 10

Functions over lists (2)

declare
fun {Pascal N}
 if N==1 then [1]
 else
 {AddList
 {ShiftLeft {Pascal N-1}}
 {ShiftRight {Pascal N-1}}}
 end
end

AddList

ShiftLeft ShiftRight

Pascal N-1 Pascal N-1

Pascal N

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 11

Functions over lists (3)

fun {ShiftLeft L}
 case L of H|T then
 H|{ShiftLeft T}
 else [0]
 end
end

fun {ShiftRight L} 0|L end

fun {AddList L1 L2}
 case L1 of H1|T1 then
 case L2 of H2|T2 then

 H1+H2|{AddList T1 T2}
 end
 else nil end
end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 12

Top-down program development
•  Understand how to solve the problem by hand
•  Try to solve the task by decomposing it to simpler tasks
•  Devise the main function (main task) in terms of suitable

auxiliary functions (subtasks) that simplify the solution
(ShiftLeft, ShiftRight and AddList)

•  Complete the solution by writing the auxiliary functions
•  Test your program bottom-up: auxiliary functions first.

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 13

Is your program correct?
•  “A program is correct when it does what we would like it

to do”
•  In general we need to reason about the program:
•  Semantics for the language: a precise model of the

operations of the programming language
•  Program specification: a definition of the output in terms

of the input (usually a mathematical function or relation)
•  Use mathematical techniques to reason about the program,

using programming language semantics

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 14

Mathematical induction
•  Select one or more inputs to the function
•  Show the program is correct for the simple cases (base

cases)
•  Show that if the program is correct for a given case, it is

then correct for the next case.
•  For natural numbers, the base case is either 0 or 1, and for

any number n the next case is n+1
•  For lists, the base case is nil, or a list with one or a few

elements, and for any list T the next case is H|T

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 15

Correctness of factorial

fun {Fact N}
 if N==0 then 1 else N*{Fact N-1} end
end

•  Base Case N=0: {Fact 0} returns 1
•  Inductive Case N>0: {Fact N} returns N*{Fact N-1} assume

{Fact N-1} is correct, from the spec we see that {Fact N} is
N*{Fact N-1}

nn
nFact

×−×××
−

)1(

)1(21

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 16

Complexity
•  Pascal runs very slow,

try {Pascal 24}
•  {Pascal 20} calls: {Pascal 19} twice,

{Pascal 18} four times, {Pascal 17}
eight times, ..., {Pascal 1} 219 times

•  Execution time of a program up to a
constant factor is called the
program’s time complexity.

•  Time complexity of {Pascal N} is
proportional to 2N (exponential)

•  Programs with exponential time
complexity are impractical

declare
fun {Pascal N}
 if N==1 then [1]
 else
 {AddList
 {ShiftLeft {Pascal N-1}}
 {ShiftRight {Pascal N-1}}}
 end
end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 17

fun {FastPascal N}
 if N==1 then [1]
 else
 local L in

 L={FastPascal N-1}
 {AddList {ShiftLeft L} {ShiftRight L}}
 end

 end
end

Faster Pascal
•  Introduce a local variable L
•  Compute {FastPascal N-1} only once
•  Try with 30 rows.
•  FastPascal is called N times, each

time a list on the average of size N/2
is processed

•  The time complexity is proportional
to N2 (polynomial)

•  Low order polynomial programs are
practical.

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 18

Lazy evaluation
•  The functions written so far are evaluated eagerly (as soon

as they are called)
•  Another way is lazy evaluation where a computation is

done only when the result is needed

declare
fun lazy {Ints N}
 N|{Ints N+1}
end

•  Calculates the infinite list:
0 | 1 | 2 | 3 | ...

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 19

Lazy evaluation (2)
•  Write a function that computes as

many rows of Pascal’s triangle as
needed

•  We do not know how many
beforehand

•  A function is lazy if it is evaluated
only when its result is needed

•  The function PascalList is evaluated
when needed

fun lazy {PascalList Row}
 Row | {PascalList
 {AddList

 {ShiftLeft Row}
 {ShiftRight Row}}}

end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 20

Lazy evaluation (3)
•  Lazy evaluation will avoid

redoing work if you decide first
you need the 10th row and later
the 11th row

•  The function continues where it
left off

declare
L = {PascalList [1]}
{Browse L}
{Browse L.1}
{Browse L.2.1}

L<Future>
[1]
[1 1]

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 21

Higher-order programming
•  Assume we want to write another Pascal function, which

instead of adding numbers, performs exclusive-or on them
•  It calculates for each number whether it is odd or even

(parity)
•  Either write a new function each time we need a new

operation, or write one generic function that takes an
operation (another function) as argument

•  The ability to pass functions as arguments, or return a
function as a result is called higher-order programming

•  Higher-order programming is an aid to build generic
abstractions

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 22

Variations of Pascal
•  Compute the parity Pascal triangle

1
1 1

1 2 1

1 3 3 1
1 4 6 4 1

1
1 1

1 0 1

1 1 1 1
1 0 0 0 1

fun {Xor X Y} if X==Y then 0 else 1 end end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 23

Higher-order programming
fun {GenericPascal Op N}
 if N==1 then [1]
 else L in L = {GenericPascal Op N-1}
 {OpList Op {ShiftLeft L} {ShiftRight L}}
 end
end
fun {OpList Op L1 L2}

 case L1 of H1|T1 then
 case L2 of H2|T2 then
 {Op H1 H2}|{OpList Op T1 T2}
 end

 else nil end
end

fun {Add N1 N2} N1+N2 end
fun {Xor N1 N2}

 if N1==N2 then 0 else 1 end
end

fun {Pascal N} {GenericPascal Add N} end
fun {ParityPascal N}

 {GenericPascal Xor N}
end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 24

Concurrency
•  How to do several things at once
•  Concurrency: running several activities

each running at its own pace
•  A thread is an executing sequential

program
•  A program can have multiple threads by

using the thread instruction
•  {Browse 99*99} can immediately respond

while Pascal is computing

thread
 P in
 P = {Pascal 21}
 {Browse P}
end
{Browse 99*99}

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 25

Dataflow

•  What happens when multiple threads try to
communicate?

•  A simple way is to make communicating
threads synchronize on the availability of data
(data-driven execution)

•  If an operation tries to use a variable that is not
yet bound it will wait

•  The variable is called a dataflow variable

+

* *

X Y Z U

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 26

Dataflow (II)

•  Two important properties of dataflow
–  Calculations work correctly independent

of how they are partitioned between
threads (concurrent activities)

–  Calculations are patient, they do not
signal error; they wait for data
availability

•  The dataflow property of variables
makes sense when programs are
composed of multiple threads

declare X
thread
 {Delay 5000} X=99
End
{Browse ‘Start’} {Browse X*X}

declare X
thread
 {Browse ‘Start’} {Browse X*X}
end
{Delay 5000} X=99

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 27

State
•  How to make a function learn from its past?
•  We would like to add memory to a function to

remember past results
•  Adding memory as well as concurrency is an

essential aspect of modeling the real world
•  Consider {FastPascal N}: we would like it to

remember the previous rows it calculated in
order to avoid recalculating them

•  We need a concept (memory cell) to store,
change and retrieve a value

•  The simplest concept is a (memory) cell which
is a container of a value

•  One can create a cell, assign a value to a cell,
and access the current value of the cell

•  Cells are not variables

declare
C = {NewCell 0}
{Assign C {Access C}+1}
{Browse {Access C}}

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 28

Example
•  Add memory to Pascal to

remember how many times
it is called

•  The memory (state) is
global here

•  Memory that is local to a
function is called
encapsulated state

declare
C = {NewCell 0}
fun {FastPascal N}

 {Assign C {Access C}+1}
 {GenericPascal Add N}

end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 29

Objects

•  Functions with internal
memory are called objects

•  The cell is invisible outside
of the definition

declare
local C in
 C = {NewCell 0}
 fun {Bump}
 {Assign C {Access C}+1}
 {Access C}
 end
end

declare
fun {FastPascal N}

 {Browse {Bump}}
 {GenericPascal Add N}

end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 30

Classes
•  A class is a ’factory’ of

objects where each object
has its own internal state

•  Let us create many
independent counter
objects with the same
behavior

fun {NewCounter}
 local C Bump in
 C = {NewCell 0}
 fun {Bump}
 {Assign C {Access C}+1}
 {Access C}
 end
 Bump
 end
end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 31

Classes (2)

•  Here is a class with two
operations: Bump and
Read

fun {NewCounter}
 local C Bump Read in
 C = {NewCell 0}
 fun {Bump}
 {Assign C {Access C}+1}
 {Access C}
 end
 fun {Read}
 {Access C}
 end
 [Bump Read]
 end
end

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 32

Object-oriented programming
•  In object-oriented programming the idea of objects and

classes is pushed farther
•  Classes keep the basic properties of:

–  State encapsulation
–  Object factories

•  Classes are extended with more sophisticated properties:
–  They have multiple operations (called methods)
–  They can be defined by taking another class and extending it

slightly (inheritance)

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 33

Nondeterminism
•  What happens if a program has both concurrency and state

together?
•  This is very tricky
•  The same program can give different results from one

execution to the next
•  This variability is called nondeterminism
•  Internal nondeterminism is not a problem if it is not

observable from outside

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 34

Nondeterminism (2)
declare
C = {NewCell 0}

thread {Assign C 1} end
thread {Assign C 2} end

time

C = {NewCell 0}
cell C contains 0

{Assign C 1}
cell C contains 1

{Assign C 2}
cell C contains 2 (final value)

t0

t1

t2

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 35

Nondeterminism (3)
declare
C = {NewCell 0}

thread {Assign C 1} end
thread {Assign C 2} end

time

C = {NewCell 0}
cell C contains 0

{Assign C 2}
cell C contains 2

{Assign C 1}
cell C contains 1 (final value)

t0

t1

t2

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 36

Nondeterminism (4)
declare
C = {NewCell 0}

thread I in

 I = {Access C}
 {Assign C I+1}

end
thread J in
 J = {Access C}

 {Assign C J+1}
end

•  What are the possible results?
•  Both threads increment the cell

C by 1
•  Expected final result of C is 2
•  Is that all?

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 37

Nondeterminism (5)
•  Another possible final result is the cell

C containing the value 1

declare
C = {NewCell 0}
thread I in

 I = {Access C}
 {Assign C I+1}

end
thread J in
 J = {Access C}

 {Assign C J+1}
end

time

C = {NewCell 0}

I = {Access C}
I equal 0

t0

t1

t2 J = {Access C}
J equal 0
{Assign C J+1}
C contains 1

{Assign C I+1}
C contains 1

t3

t4

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 38

Lessons learned

•  Combining concurrency and state is tricky
•  Complex programs have many possible interleavings
•  Programming is a question of mastering the interleavings
•  Famous bugs in the history of computer technology are due to

designers overlooking an interleaving (e.g., the Therac-25 radiation
therapy machine giving doses 1000’s of times too high, resulting in
death or injury)

•  If possible try to avoid concurrency and state together
•  Encapsulate state and communicate between threads using dataflow
•  Try to master interleavings by using atomic operations

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 39

Atomicity
•  How can we master the interleavings?
•  One idea is to reduce the number of interleavings by

programming with coarse-grained atomic operations
•  An operation is atomic if it is performed as a whole or

nothing
•  No intermediate (partial) results can be observed by any

other concurrent activity
•  In simple cases we can use a lock to ensure atomicity of a

sequence of operations
•  For this we need a new entity (a lock)

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 40

Atomicity (2)
declare
L = {NewLock}

lock L then
 sequence of ops 1
end

Thread 1

lock L then
 sequence of ops 2
end

Thread 2

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 41

The program
declare
C = {NewCell 0}
L = {NewLock}

thread

 lock L then I in
 I = {Access C}
 {Assign C I+1}
 end

end
thread

 lock L then J in
 J = {Access C}

 {Assign C J+1}
 end

end

The final result of C is
always 2

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 42

Memoizing FastPascal

•  {FasterPascal N} New Version
1.  Make a store S available to FasterPascal
2.  Let K be the number of the rows stored in

S (i.e. max row is the Kth row)
3.  if N is less or equal to K retrieve the Nth

row from S
4.  Otherwise, compute the rows numbered K

+1 to N, and store them in S
5.  Return the Nth row from S

•  Viewed from outside (as a black box),
this version behaves like the earlier
one but faster

declare
S = {NewStore}
{Put S 2 [1 1]}
{Browse {Get S 2}}
{Browse {Size S}}

C. Varela; Adapted w. permission from S. Haridi and P. Van Roy 43

Exercises
30. Prove the correctness of AddList and ShiftLeft.
31. CTM Exercise 1.18.5. (page 24)
32. CTM Exercise 1.18.6. (page 24)

c) Change GenericPascal so that it also receives a number to use as an
identity for the operation Op: {GenericPascal Op I N}. For
example, you could then use it as:
 {GenericPascal Add 0 N}, or
 {GenericPascal fun {$ X Y} X*Y end 1 N}

33. Prove that the alternative version of Pascal triangle (not
using ShiftLeft) is correct. Make AddList and OpList
commutative.

34. Write the memoizing Pascal function using the store
abstraction (available at store.oz).

