State, Object-Oriented Programming

Explicit State, Polymorphism (CTM 6.1-6.4.4)
Objects, Classes and Inheritance (CTM 7.1-2)

Carlos Varela
Rensselaer Polytechnic Institute
October 31, 2014

Adapted with permission from:
Seif Haridi
KTH
Peter Van Roy
UCL

C. Varela 1

What 1s state?

State 1s a sequence of

values 1n time that contains
the intermediate results of a

desired computation

Declarative programs can
also have state according to

this definition

Consider the following
program

C. Varela

fun {Sum Xs A}
case Xs
of X|Xr then {Sum Xr A+X}
[nil then A
end
end

{Browse {Sum [1 2 3 4] O}}

What 1s implicit state?

The two arguments Xs and A

represent an implicit state fun {Sum Xs A}
Xs A case Xs
'1234] 0 of X|Xr then {Sum Xr A+X}
23 4] 1 [] nil then A
I end
3 4] 3 end
4] 6

nil 10 {Browse {Sum [1 2 3 4] 0}}

C. Varela

What 1s explicit state: Example?

An unbound X
variable

A cell C is created
with initial value 5 X >

X 1sbound to C

The cell C, which X is T
bound to, is assigned X .

the value 6

C. Varela

What 1s explicit state: Example?

Anunbound The cell is a value

variable , . _
C container with a unique
A cell C is created ' ide .tlty
with initial value X = * X 1s really bound to
5 the identity of the cell
X is bound to C C When the cell 1s
assigned, X does not
The cell C, which X 1s
’ . change
bound to, 1s assigned X E g
the value 6

C. Varela 5

What 1s explicit state?

X = {NewCell I}

— Creates a cell with initial value I
— Binds X to the identity of the cell

Example: X = {NewCell 0}
{Assign X J}

— Assumes X 1s bound to a cell C (otherwise exception)
— Changes the content of C to become J

Y = {Access X}

— Assumes X 1s bound to a cell C (otherwise exception)
— Binds Y to the value contained in C

C. Varela

Examples

X = {NewCell 0}

{Assign X 5}

X
Y=X

Y

{Assign Y 10}

{Access X} == 10 %
returns true Y

X =Y % returns true

C. Varela

Examples

X = {NewCell 10}

Y = {NewCell 10}

X=Y 9% returns false

Because X and Y refer to
different cells, with
different 1identities

{Access X} == {Access Y}
returns true
C. Varela

The model extended with cells

Semantic stack

w = 1(x) ol:w
z = person(a:y) o2: x
y=aoal

u=o2

X

single assignment
store

mutable store

C. Varela

The stateful model

(s)::=skip empty statement
(sy) (sy) statement sequence
{NewCell {x) (c)} cell creation
{Exchange (c) (x) (y)} cell exchange

Exchange: bind (x) to the old content of (¢) and set the
content of the cell {c) to (y)

C. Varela 10

The stateful model

| {NewCell {x) {c)} cell creation
| {Exchange {(c) (x) {y)} cell exchange

Exchange: bind (x) to the old content of (¢) and set the
content of the cell {c) to (y)

proc {Assign C X} {Exchange C X} end
fun {Access C} X in{Exchange C X X} X end

C := X 1s syntactic sugar for {Assign C X}
@C 1s syntactic sugar for {Access C}
X=C:=Y 1s syntactic sugar for {Exchange C X Y}

C. Varela

11

Abstract data types (revisited)

For a given functionality, there are many ways to package
the ADT. We distinguish three axes.

Open vs. secure ADT: 1s the internal representation visible
to the program or hidden?

Declarative vs. stateful ADT: does the ADT have
encapsulated state or not?

Bundled vs. unbundled ADT: 1s the data kept together with
the operations or is it separable?

Let us see what our stack ADT looks like with some of
these possibilities

C. Varela 12

Stack:
Open, declarative, and unbundled

e Here 1s the basic stack, as we saw 1t before:

fun {NewStack} nil end
fun {Push S E} E|S end

{
{
fun {Pop S E} case S of X|S1 then E=X S1 end end
fun {IsEmpty S} S==nil end

« This 1s completely unprotected. Where 1s 1t useful?
Primarily, in small programs in which expressiveness 1s

more 1important than security.

C. Varela 13

Stack:
Secure, declarative, and unbundled

* We can make the declarative stack secure by using a wrapper:

local Wrap Unwrap
in
{NewWrapper Wrap Unwrap}
fun {NewStack} {Wrap nil} end
fun {Push S E} {Wrap E[{Unwrap S}} end
fun {Pop S E} case {Unwrap S} of X|S1 then E=X {Wrap S1} end end
fun {IsEmpty S} {Unwrap S} ==nil end
end

* Where is this useful? In large programs where we want to protect the
implementation of a declarative component.

C. Varela 14

Stack:
Secure, stateful, and unbundled

» Let us combine the wrapper with state:

local Wrap Unwrap

in
{NewWrapper Wrap Unwrap}
fun {NewStack} {Wrap {NewCell nil}} end
proc {Push W X} C={Unwrap W} in {Assign C X|{Access C}} end
fun {Pop W} C={Unwrap W} in

case {Access C} of X|S then {Assign C S} X end

end
fun {IsEmpty W} {Access {Unwrap W}}==nil end

end

» This version is stateful but lets us store the stack separate from the operations.
The same operations work on all stacks.

C. Varela 15

Stack:
Secure, stateful, and bundled

« This is the simplest way to make a secure stateful stack:

proc {NewStack ?Push ?Pop ?IsEmpty}
C={NewCell nil}
in
proc {Push X} {Assign C X|{Access C}} end
fun {Pop} case {Access C} of X|S then {Assign C S} X end end
fun {IsEmpty} {Access C} ==nil end
end

« Compare the declarative with the stateful versions: the declarative
version needs two arguments per operation, the stateful version uses

higher-order programming (instantiation)
» With some syntactic support, this is object-based programming

C. Varela 16

Four ways to package a stack

Open, declarative, and unbundled: the usual declarative
style, e.g., in Prolog and Scheme

Secure, declarative, and unbundled: use wrappers to make
the declarative style secure

Secure, stateful, and unbundled: an interesting variation on
the usual object-oriented style

Secure, stateful, and bundled: the usual object-oriented
style, e.g., in Smalltalk and Java

Other possibilities: there are four more possibilities!
Exercise: Try to write all of them.

C. Varela 17

Encapsulated stateful abstract
datatypes ADT

These are stateful entities that can be accessed only by the
external interface

The implementation is not visible outside

We show two methods to build stateful abstract data types:

— The functor based approach (record interface)
— The procedure dispatch approach

C. Varela; Adapted from S. Haridi and P. Van Roy

18

The functor-based approach

fun {NewCounter I}

S = {NewCell I}

proc {Inc} S := @S +1 end

proc {Dec} S := @S -1 end

fun {Get} @S end

proc {Putl} S:=Iend

proc {Display} {Browse @S} end
in o(inc:Inc dec:Dec get:Get put:Put display:Display)
end

C. Varela; Adapted from S. Haridi and P. Van Roy

19

The functor-based approach

fun {NewCounter I}
S = {NewCell I}

N\

The state 1s collected in cell S
The state 1s completely encapsulated
1.€. not visible outside

in o(inc:Inc dec:Dec get:Get put:Put browse:Display)
end

C. Varela; Adapted from S. Haridi and P. Van Roy

20

The functor-based approach

fun {NewCounter I}

The interface is created for each
instance Counter

A

in o(inc:Inc dec:Dec get:Get put:Put display:Display)
end

C. Varela; Adapted from S. Haridi and P. Van Roy

21

The functor-based approach

fun {NewCounter I}
S = {NewCell I}
proc {Inc} S := @S + 1 end
proc {Dec} S := @S - 1end

functions that access
the state by lexical scope

in o(inc:Inc dec:Dec get:Get put:Put display:Display)
end

C. Varela; Adapted from S. Haridi and P. Van Roy

22

Call pattern
declare C1 C2
C1 = {NewCounter 0}
C2 = {NewCounter 100}

{Cl.anc}
{Cl.display}

{C2.dec}
{C2.display}

C. Varela; Adapted from S. Haridi and P. Van Roy

23

Detined as a functor

functor Counter
export inc:Inc dec:Dec get:Get put:Put display:Display init:Init

define

end

S

proc {Init init(I)} S = {NewCell I} end
proc {Inc} S:=@S +1 end

proc {Dec} S :=@S -1 end

fun {Get} @S end

proc {PutI} S :=1end

proc {Display} {Browse @S} end

C. Varela; Adapted from S. Haridi and P. Van Roy

24

Functors

* Functors have been used as a specification of modules

« Also functors have been used as a specification of abstract
datatypes

« How to create a stateful entity from a functor?

C. Varela; Adapted from S. Haridi and P. Van Roy 25

Explicit creation of objects from
functors

Given a variable F that is bound to a functor
[O] = {Module.apply [F]}
creates stateful ADT object O that 1s an instance of F

Given the functor F 1s stored on a file ’f.ozf’

[O] = {Module.link [’f.0zf’]}
creates stateful ADT object O that 1s an instance of F

C. Varela; Adapted from S. Haridi and P. Van Roy 26

Detined as a functor

functor Counter
export inc:Inc dec:Dec get:Get put:Put display:Display init:Init

define

end

S

proc {Init init(I)} S = {NewCell I} end
proc {Inc} S:=@S +1 end

proc {Dec} S :=@S -1 end

fun {Get} @S end

proc {PutI} S :=1end

proc {Display} {Browse @S} end

C. Varela; Adapted from S. Haridi and P. Van Roy

27

Pattern of use

fun {New Functor Init}

M in
Generic function to
M] = {Module.apply [Functor :
[]_ ,{ _ PPy | I3 create objects from
{M.init Init} & e
M
End

declare C1 C2
C1 = {New Counter init(0)}

{Cl.inc} {Cl.put 50} {Cl.display} record with procedure
(C2.dec! {C2.display} values 1nside fields

C. Varela; Adapted from S. Haridi and P. Van Roy 28

The procedure-based approach

fun {Counter}
S
proc {Inc inc(Value)} S := @S + Value end
proc {Display display} {Browse @S} end
proc {Init mit(I)} S = {NewCell I} end
D = o(inc:Inc display:Display init:Init)

in proc{$ M} {D.{Label M} M} end

end

C. Varela; Adapted from S. Haridi and P. Van Roy

29

The procedure-based approach

fun {Counter}
S

D = o(inc:Inc display:Display init:Init)
in proc{$ M} {D.{Label M} M} end

end
fun {New Class InitialMethod}
O = {Class}

in {O InitialMethod} O end

C. Varela; Adapted from S. Haridi and P. Van Roy

30

Example

* The following shows how an object is created from

a class

using the procedure New/ 3, whose first

argument 1s the class, the second is the initial
method, and the result 1s the object.

* New/3 is a generic procedure for creating objects
from classes.

declare C = {New Counter init(0)}

{C disp
{C inc(’

{C disp

d

y} Object interface 1s as a procedure of
)} } one argument, which expects a record
ay

C. Varela; Adapted from S. Haridi and P. Van Roy 31

Object-oriented programming

* Supports
— Encapsulation
— Compositionality
— Instantiation

e Plus

— Inheritance

C. Varela; Adapted from S. Haridi and P. Van Roy

32

Inheritance

Programs can be built in hierarchical structure from ADT’s
that depend on other ADT’s (Components)

Object-oriented programming (inheritance) 1s based on the
1dea that ADTs have so much in common

For example, sequences (stacks, lists, queues)

Object oriented programming enables building ADTs
incrementally, through inheritance

An ADT can be defined to inherit from another abstract
data type, substantially sharing functionality with that
abstract data type

Only the difference between an abstract datatype and its
ancestor has to be specified

C. Varela; Adapted from S. Haridi and P. Van Roy 33

What 1s object-oriented

programming?

OOP (Object-oriented programming) = encapsulated state
+ inheritance

Object

— An entity with unique i1dentity that encapsulates state
— State can be accessed 1n a controlled way from outside

— The access is provided by means of methods (procedures that can
directly access the internal state)

Class

— A specification of objects in an incremental way

— Incrementality 1s achieved inheriting from other classes by
specifying how its objects (instances) differ from the objects of the
inherited classes

C. Varela; Adapted from S. Haridi and P. Van Roy 34

Instances (objects)

Interface (what methods
are available)

State (attributes)

Procedures (methods)

C. Varela; Adapted from S. Haridi and P. Van Roy

35

Classes (simplified syntax)

A class 1s a statement

class (ClassVariable)
attr
(AttrNamel)

(AttrNameN)
meth (Pattern1) (Statement) end

meth (PatternN) (Statement) end
end

C. Varela; Adapted from S. Haridi and P. Van Roy

36

Classes (simplified syntax)

A class can also be a value that can be in an expression position

class $

attr
(AttrNamel)

(AttrNamen)
meth (Pattern) (Statement) end

meth (Pattern) (Statement) end
end

C. Varela; Adapted from S. Haridi and P. Van Roy 37

Classes 1n Oz

The class Counter has the syntactic form

class Counter
attr val
meth display
{Browse @val}
end
meth inc(Value)
val ;= @val + Value

end

meth init(Value)
val := Value

end

end

C. Varela; Adapted from S. Haridi and P. Van Roy

38

Attributes of Classes

The class Counter has the syntactic form

class Counter val 1s an attribute:

attrval «— amodifiable cell
that is accessed by the

atom val

end

C. Varela; Adapted from S. Haridi and P. Van Roy

39

Attributes of classes

The class Counter has the syntactic form

class Counter

attr val
meth display
{Browse @Val} the attribute val
end is accessed by the
meth inc(Value) operator @val
val ;= @val + Value
end
meth init(Value)
val ;= Value
end

end

C. Varela; Adapted from S. Haridi and P. Van Roy

Attributes of classes

The class Counter has the syntactic form

class Counter

attr val
meth display
{Browse @val} the attribute val
end is assigned by the
meth inc(Value) operator :=
val ;= @val + Value as val = ...
end
meth init(Value)
val := Value
end

end

C. Varela; Adapted from S. Haridi and P. Van Roy

41

Methods of classes

The class Counter has the syntactic form

class Counter methods
attr val are statements
meth display method head is a
(Browse @val} record (tuple) pattern
end

meth inc(Value)
val ;= @val + Valu

end

meth init(Value)
val := Value

end

end

C. Varela; Adapted from S. Haridi and P. Van Roy 42

Classes 1n Oz

The class Counter has the syntactic form

class Counter
attr val
meth display
{Browse @val}
end
meth inc(Value)
val ;= @val + Value

end

meth init(Value)
val := Value

end

end

C. Varela; Adapted from S. Haridi and P. Van Roy

43

Example

* An object is created from a class using the procedure New/
3, whose first argument 1s the class, the second 1s the 1nitial
method, and the result is the object (such as in the functor
and procedure approaches)

« New/3 is a generic procedure for creating objects from
classes.

declare C = {New Counter init(0)}
{C display}

{Cinc(1)}

{C display}

C. Varela; Adapted from S. Haridi and P. Van Roy 44

Summary

A class X 1s defined by:

—class X ... end

Attributes are defined using the attribute-declaration
part before the method-declaration part:

—attr A, ... A,

Then follows the method declarations, each has the
form:

—meth £ S end

The expression E evaluates to a method head, which 1s
a record whose label 1s the method name.

C. Varela; Adapted from S. Haridi and P. Van Roy 45

Summary

An attribute A 1s accessed using QA.
An attribute 1s assigned a value using 2 = E

A class can be defined as a value:

X = class S ... end

C. Varela; Adapted from S. Haridi and P. Van Roy

Attribute Initialization

 Stateful (may be updated by :=)

 Initialized at object creation time, all instances
have the 1nitial balance = 0

e class Account
attr balance:0
meth ..

end

In general the initial value
of an attribute could be any
legal value (including
end classes and objects)

C. Varela; Adapted from S. Haridi and P. Van Roy

47

Attribute Initialization

 Initialization by instance
class Account

attr balance
meth init(X) balance := X end

End

Ol = {New Account init(100)}
* 02 = {New Account init(50)}

C. Varela; Adapted from S. Haridi and P. Van Roy

48

Attribute Initialization

 Initialization by brand
declare L=linux
class RedHat

attr ostype:L

meth get(X) X = @ostype end
end
class SUSE

attr ostype:L

meth get(X) X = @ostype end
end
class Debian

attr ostype:L

meth get(X) X = @ostype end

end
C. Varela; Adapted from S. Haridi and P. Van Roy

49

Example

class Queue

attr front back count
meth init

Qin

front ;== Q back :=Q count:=0
end
meth put(X)

Qin

(@back = X|Q

back :=Q

count ;= (@count + 1
end

end

C. Varela; Adapted from S. Haridi and P. Van Roy

50

Example

class Queue
attr front back count

meth 1nit front Q0
Qin
back

front ;= Q back :=Q count ;=0

end

meth put(X) put(a)
Qin
(@back = X|Q

back := front

count ;= (@count + 1
end

end

C. Varela; Adapted from S. Haridi and P. Van Roy

51

Example

class Queue

attr front back count front
T a|Ql
meth get(?X) back _JT
Qin X
X|Q = @front
front .= Q

count := (@count - 1

end front /_\

meth count(?X) X = (@count end al|Ql
back _ﬂ
end
X

C. Varela; Adapted from S. Haridi and P. Van Roy 52

Classes as incremental ADT's

* (Object-oriented programming allows us to define a class
by extending existing classes

 Three things have to be introduced

— How to express inheritance, and what does it mean?

— How to access particular methods in the new class and in
preexisting classes

— Visibility — what part of the program can see the attributes and
methods of a class

« The notion of delegation as a substitute for inheritance

C. Varela; Adapted from S. Haridi and P. Van Roy

53

Inheritance

Inheritance should be

used as a way to
specialize a class while
retaining the relationship
between methods

general
class

In this way 1t 1s a just an
extension of an ADT

The other view 1s

inheritance 1s just a (lazy)
way to construct new
abstract data types !

No relationships are
preserved

specialized
class

C. Varela; Adapted from S. Haridi and P. Van Roy

54

Inheritance

class Account
attr balance:0
meth transfer(Amount)
balance := (@balance+Amount

end
meth getBal(B)
B = (@balance
end
end

A={New Account transfer(100)}

C. Varela; Adapted from S. Haridi and P. Van Roy

55

Inheritance 11

The class VerboseAccount has the
methods:

transfer, getBal, and
verboseTransfer

Conservative extension
class VerboseAccount

from Account

meth verboseTransfer(Amount)

end
end

C. Varela; Adapted from S. Haridi and P. Van Roy 56

Inheritance 11

The class AccountWithFee has the

Non-Conservative extension methods:
. transfer, getBal, and verboseTransfer
class AccountWithFee The method transfer has been redefined
from VerboseAccount (overridden) with another definition
attr fee:5

meth transfer(Amount)

end
end

C. Varela; Adapted from S. Haridi and P. Van Roy 57

Inheritance 11

Non-Conservative extension Account
class AccountWithFee

from VerboseAccount

attr fee:5 VerboseAccount

meth transfer(Amount)

end
end AccountWithFee

C. Varela; Adapted from S. Haridi and P. Van Roy

58

Polymorphism

The ability for operations to take Account
objects (instances) of different types.

For example, the transfer method can
be invoked in account object instances VerboseAccount

of three different classes.

The most specific behavior should be
executed. AccountWithFee

C. Varela; Adapted from S. Haridi and P. Van Roy

59

Static and dynamic binding

Dynamic binding
 Inside an object O we want to
invoke a method M

 This is written as {self M}, and
chooses the method visible in
the current object (M of D)

4 I
O
an instance
of D
\)

C. Varela; Adapted from S. Haridi and P. Van Roy

class C
meth M

class D

a subclass of
C

Meth M —

60

Static and dynamic binding

Static binding

* Inside an object O we want to class C
invoke a method M 1n a specific meth M e
(super) class

e This is written as C, M and

chooses the method visible in
the super class C (M of C)

4 A class D
O
. a subclass of
an instance
of D C
_ J meth M

C. Varela; Adapted from S. Haridi and P. Van Roy 61

Static method calls

Given a class and a method head m(...), a static method-call
has the following form:

C,m(...)
Invokes the method defined in the class argument.

A static method call can only be used inside class
definitions.

The method call takes the current object denoted by self as
implicit argument.

The method m could be defined 1n the class C, or inherited
from a super class.

C. Varela; Adapted from S. Haridi and P. Van Roy 62

66.

67.

68.
069.

Exercises

Do Java and C++ object abstractions completely
encapsulate internal state? If so, how? If not, why?

Do Java and C++ enable static access to methods defined
in classes arbitrarily high in the inheritance hierarchy? If
so, how? If not, why?

Exercise CTM 7.9.1 (pg 567)
Exercise CTM 7.9.7 (pg 568)

C. Varela; Adapted from S. Haridi and P. Van Roy 63

